Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Neurotoxicology ; 83: 166-178, 2021 03.
Article in English | MEDLINE | ID: mdl-33290785

ABSTRACT

The European Union's REACH Regulation requires determination of potential health and environmental effects of chemicals in commerce. The present case study examines the application of REACH guidance for health hazard assessments of three high production volume (HPV) aluminium (Al) substances: metallic aluminium, aluminium oxide, and aluminium hydroxide. Among the potential adverse health consequences of aluminium exposure, neurotoxicity is one of the most sensitive targets of Al toxicity and the most critical endpoint. This case study illustrates integration of data from multiple lines of evidence into REACH weight of evidence evaluations. This case study then explains how those results support regulatory decisions on classification and labelling. Challenges in the REACH appraisal of Al compounds include speciation, solubility and bioavailability, application of assessment factors, read-across rationale and differences with existing regulatory standards. Lessons learned from the present case study relate to identification and evaluation of toxicologic and epidemiologic data; assessing data relevance and reliability; development of derived no-effect levels (DNELs); addressing data gaps and preparation of chemical safety reports.


Subject(s)
Aluminum Hydroxide/toxicity , Aluminum Oxide/toxicity , Aluminum/toxicity , Nervous System/drug effects , Neurotoxicity Syndromes/etiology , Toxicity Tests , Aluminum/pharmacokinetics , Aluminum Hydroxide/pharmacokinetics , Aluminum Oxide/pharmacokinetics , Animals , Europe , European Union , Humans , Nervous System/metabolism , Nervous System/pathology , Nervous System/physiopathology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/physiopathology , Risk Assessment , Toxicokinetics
2.
Neurotoxicology ; 83: 157-165, 2021 03.
Article in English | MEDLINE | ID: mdl-32360354

ABSTRACT

Epidemiological evidence linking aluminum in drinking water and Alzheimer's disease (AD) has been inconsistent, with previous studies often limited by small sample sizes. The present study addresses this issue using data from the Canadian Study of Health and Aging (CSHA), a prospective cohort of 10,263 subjects followed-up from 1991-1992 through 2001-2002. Participants' residential histories were linked to municipal drinking water sources in 35 Canadian municipalities to obtain ecologic pH, aluminum, fluoride, iron and silica concentrations in drinking water. Cox proportional hazards models were used to examine associations between aluminum and incident AD [Hazard Ratios (HRs), 95% confidence intervals (CIs)], adjusting for age, gender, history of stroke, education, and high blood pressure. A total of 240 incident AD cases were identified during follow-up of 3, 638 subjects derived from the CSHA cohort with complete data on all covariates. With categorical aluminum measurements, there was an increasing, but not statistically significant, exposure-response relationship (HR = 1.34, 95% CI 0.88-2.04, in the highest aluminum exposure category; p = 0.13 for linear trend). Similar results were observed using continuous aluminum measurements (HR=1.21, 95% CI 0.97-1.52, at the interquartile range of 333.8 µg/L; p = 0.09 for linear trend). In a subsample genotyped for ApoE-ε4, there was some evidence of an association between aluminum and AD (p = 0.03 for linear trend). Although a clear association between aluminum in drinking water and AD was not found, the linear trend observed in ApoE-ε4 subsample warrants further examination.


Subject(s)
Aluminum Compounds/adverse effects , Alzheimer Disease/epidemiology , Drinking Water/adverse effects , Water Pollutants, Chemical/adverse effects , Age Factors , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Canada/epidemiology , Female , Genetic Predisposition to Disease , Humans , Incidence , Longitudinal Studies , Male , Prospective Studies , Risk Assessment , Risk Factors
4.
Crit Rev Toxicol ; 44 Suppl 4: 1-80, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25233067

ABSTRACT

Abstract Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007) . Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of "total Al"assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al(+3) to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)(+2) and Al(H2O)6 (+3)] that after complexation with O2(•-), generate Al superoxides [Al(O2(•))](H2O5)](+2). Semireduced AlO2(•) radicals deplete mitochondrial Fe and promote generation of H2O2, O2 (•-) and OH(•). Thus, it is the Al(+3)-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer's disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances.


Subject(s)
Aluminum Hydroxide/toxicity , Aluminum Oxide/toxicity , Aluminum/toxicity , Nanoparticles/toxicity , Occupational Exposure/adverse effects , Animals , Carcinogenesis/drug effects , Cardiovascular System/drug effects , Central Nervous System/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Endocrine System/drug effects , Europe , Gastrointestinal Tract/drug effects , Guidelines as Topic/standards , Humans , Kidney/drug effects , Liver/drug effects , Randomized Controlled Trials as Topic , Respiratory System/drug effects , Risk Assessment , Risk Factors
5.
Crit Rev Toxicol ; 42(5): 358-442, 2012 May.
Article in English | MEDLINE | ID: mdl-22512666

ABSTRACT

Maximum contaminant levels are used to control potential health hazards posed by chemicals in drinking water, but no primary national or international limits for aluminum (Al) have been adopted. Given the differences in toxicological profiles, the present evaluation derives total allowable concentrations for certain water-soluble inorganic Al compounds (including chloride, hydroxide, oxide, phosphate and sulfate) and for the hydrated Al silicates (including attapulgite, bentonite/montmorillonite, illite, kaolinite) in drinking water. The chemistry, toxicology and clinical experience with Al materials are extensive and depend upon the particular physical and chemical form. In general, the water solubility of the monomeric Al materials depends on pH and their water solubility and gastrointestinal bioavailability are much greater than that of the hydrated Al silicates. Other than Al-containing antacids and buffered aspirin, food is the primary source of Al exposure for most healthy people. Systemic uptake of Al after ingestion of the monomeric salts is somewhat greater from drinking water (0.28%) than from food (0.1%). Once absorbed, Al accumulates in bone, brain, liver and kidney, with bone as the major site for Al deposition in humans. Oral Al hydroxide is used routinely to bind phosphate salts in the gut to control hyperphosphatemia in people with compromised renal function. Signs of chronic Al toxicity in the musculoskeletal system include a vitamin D-resistant osteomalacia (deranged membranous bone formation characterized by accumulation of the osteoid matrix and reduced mineralization, reduced numbers of osteoblasts and osteoclasts, decreased lamellar and osteoid bands with elevated Al concentrations) presenting as bone pain and proximal myopathy. Aluminum-induced bone disease can progress to stress fractures of the ribs, femur, vertebrae, humerus and metatarsals. Serum Al ≥100 µg/L has a 75-88% positive predictive value for Al bone disease. Chronic Al toxicity is also manifest in the hematopoietic system as an erythropoietin-resistant microcytic hypochromic anemia. Signs of Al toxicity in the central nervous system (speech difficulty to total mutism to facial grimacing to multifacial seizures and dyspraxia) are related to Al accumulation in the brain and these symptoms can progress to frank encephalopathy. There are four groups of people at elevated risk of systemic Al intoxication after repeated ingestion of monomeric Al salts: the preterm infant, the infant with congenital uremia and children and adults with kidney disease. There is a dose-dependent increase in serum and urinary Al in people with compromised renal function, and restoration of renal function permits normal handling of systemically absorbed Al and resolution of Al bone disease. Clinical experience with 960 mg/day of Al(OH)(3) (~5 mg Al/kg-day) given by mouth over 3 months to men and women with compromised renal function found subclinical reductions in hemoglobin, hematocrit and serum ferritin. Following adult males and females with reduced kidney function found that ingestion of Al(OH)(3) at 2.85 g/day (~40 mg/kg-day Al) over 7 years increased bone Al, but failed to elicit significant bone toxicity. There was one report of DNA damage in cultured lymphocytes after high AlCl(3) exposure, but there is no evidence that ingestion of common inorganic Al compounds presents an increased carcinogenic risk or increases the risk for adverse reproductive or developmental outcomes. A number of studies of Al exposure in relation to memory in rodents have been published, but the results are inconsistent. At present, there is no evidence to substantiate the hypothesis that the pathogenesis of Alzheimer's Disease is caused by Al found in food and drinking water at the levels consumed by people living in North America and Western Europe. Attapulgite (palygorskite) has been used for decades at oral doses (recommended not to exceed two consecutive days) of 2,100 mg/day in children of 3-6 years, 4,200 mg/day in children of 6-12 years, and 9,000 mg/day in adults. Chronic ingestion of insoluble hydrated Al silicates (in kg) can result in disturbances in iron and potassium status, primarily as a result of clay binding to intestinal contents and enhanced fecal iron and zinc elimination. Sufficiently high doses of ingested Al silicates (≥50 g/day) over prolonged periods of time can elicit a deficiency anemia that can be corrected with oral Fe supplements. There is essentially no systemic Al uptake after ingestion of the hydrated Al silicates. Rats fed up to 20,000 ppm Ca montmorillonite (equivalent to 1,860 ppm total Al as the hydrated Al silicate) for 28 weeks failed to develop any adverse signs. The results of dietary Phase I and II clinical trials conducted in healthy adult volunteers over 14 days and 90 days with montmorillonite found no adverse effects after feeding up to 40 mg/kg-day as Al. Since the Al associated with ingestion of hydrated Al silicates is not absorbed into the systemic circulation, the hydrated Al silicates seldom cause medical problems unless the daily doses consumed are substantially greater than those used clinically or as dietary supplements. A no-observable-adverse-effect-level (NOAEL) of 13 mg/kg-day as total Al can be identified based on histologic osteomalacia seen in adult hemodialysis patients given Al hydroxide for up to 7 years as a phosphate binder. Following U.S. EPA methods for calculation of an oral reference dose (RfD), an intraspecies uncertainty factor of 10x was applied to that value results in a chronic oral reference dose (RfD) of 1.3 mg Al/kg-day; assuming a 70-kg adult consumes 2 L of drinking water per day and adjusting for a default 20% relative source contribution that value corresponds to a drinking water maximum concentration of 9 mg/L measured as total Al. A chronic NOAEL for montmorillonite as representative of the hydrated Al silicates was identified from the highest dietary concentration (20,000 ppm) fed in a 28-week bioassay with male and female Sprague-Dawley rats. Since young rats consume standard laboratory chow at ~23 g/day, this concentration corresponds to 56 mg Al/kg-day. Application of 3x interspecies uncertainty factor and a 3x factor to account for study duration results in a chronic oral RfD of 6 mg Al/kg-day. Of note, this RfD is 5-10 fold less than oral doses of Al silicates consumed by people who practice clay geophagy and it corresponds to a maximum drinking water concentration of 40 mg Al/L. To utilize the values derived here, the risk manager must recognize the particular product (e.g., alum) or source (e.g., groundwater, river water, clay or cement pipe) of the Al found in tap water, apply the appropriate analytical methods (atomic absorption, energy dispersive X-ray diffraction, infrared spectral analysis and/or scanning transmission electron microscopy) and compare the results to the most relevant standard. The drinking water concentrations derived here are greater than the U.S. EPA secondary maximum contaminant level (MCL) for total Al of 0.05-0.2 mg/L [40 CFR 143.3]. As such, domestic use of water with these concentrations is likely self-limiting given that its cloudy appearance will be greater than the maximum permitted (0.5-5.0 nephalometric turbidity units; 40 CFR Parts 141 and 142). Therefore, the organoleptic properties of Al materials in water determine public acceptance of potable water as contrast to any potential health hazard at the concentrations ordinarily present in municipal drinking water.


Subject(s)
Aluminum Compounds/analysis , Aluminum Silicates/analysis , Environmental Exposure , Environmental Monitoring/methods , Magnesium Compounds/analysis , Silicates/analysis , Water Pollutants, Chemical/analysis , Water Supply/analysis , Adult , Aluminum Compounds/pharmacokinetics , Aluminum Compounds/toxicity , Aluminum Silicates/pharmacokinetics , Aluminum Silicates/toxicity , Animals , Biological Availability , Child , Child, Preschool , Dose-Response Relationship, Drug , Female , Humans , Magnesium Compounds/pharmacokinetics , Magnesium Compounds/toxicity , Male , Maximum Allowable Concentration , Rats , Silicates/pharmacokinetics , Silicates/toxicity , Toxicity Tests , Water Pollutants, Chemical/pharmacokinetics , Water Pollutants, Chemical/toxicity , Water Supply/standards
7.
J Environ Monit ; 10(2): 176-87, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18246211

ABSTRACT

This article questions the basis for benzene as the carcinogenic surrogate in deriving health risk-based 'clean-up levels' for gasoline-impacted soil and groundwater at leaking underground storage tank properties. The epidemiological evidence suggests that acute myelogenous leukemia (AML) associated with chronic occupational benzene exposure can be best described by sigmoid dose-response relationships. A review of the molecular toxicology and kinetics of benzene points to the existence of threshold mechanisms in the induction of leukemia. The toxicological and epidemiological literature on chronic exposure to unleaded gasoline indicates that the benzene exposures required to induce a measurable carcinogenic response are substantially greater than exposures likely to be encountered from exposure to gasoline at contaminated properties. Thus, assuming that theoretical cancer risks associated with exposure to benzene from gasoline reflect actual health risks associated with such environmental exposures to gasoline and using these theoretical cancer risks and cancer potency factors for benzene to dictate soil and groundwater clean up of gasoline are not scientifically defensible.


Subject(s)
Benzene/poisoning , Benzene/toxicity , Carcinogens, Environmental/poisoning , Carcinogens, Environmental/toxicity , Gasoline/poisoning , Gasoline/toxicity , Animals , Humans , Leukemia, Myeloid, Acute/chemically induced , Leukemia, Myeloid, Acute/epidemiology , Soil Pollutants/poisoning , Soil Pollutants/toxicity , United States/epidemiology , Water Pollutants, Chemical/poisoning , Water Pollutants, Chemical/toxicity
8.
J Toxicol Environ Health B Crit Rev ; 11(2): 69-146, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18188738

ABSTRACT

Human exposure to bisphenol A (BPA) is due to that found in the diet, and BPA and its metabolites were detected at parts per billion (or less) concentrations in human urine, milk, saliva, serum, plasma, ovarian follicular fluid, and amniotic fluid. Adverse health effects in mice and rats may be induced after parenteral injection or after massive oral doses. Controlled ingestion trials in healthy adult volunteers with 5 mg d16-BPA were unable to detect parent BPA in plasma despite exquisitely sensitive (limit of detection = 6 nM) methods, but by 96 h 100% of the administered dose was recovered in urine as the glucuronide. The extensive BPA glucuronidation following ingestion is not seen after parenteral injection; only the parent BPA binds plasma proteins and estrogen receptors (ER). The hypothesis that BPA dose-response may be described by a J- or U-shape curve was not supported by toxicogenomic data collected in fetal rat testes and epididymes (after repeated parenteral exposure at 2-400,000 microg/kg-d), where a clear monotonic dose-response both in the numbers of genes and magnitude of individual gene expression was evident. There is no clear indication from available data that the BPA doses normally consumed by humans pose an increased risk for immunologic or neurologic disease. There is no evidence that BPA poses a genotoxic or carcinogenic risk and clinical evaluations of 205 men and women with high-performance liquid chromatography (HPLC)-verified serum or urinary BPA conjugates showed (1) no objective signs, (2) no changes in reproductive hormones or clinical chemistry parameters, and (3) no alterations in the number of children or sons:daughters ratio. Results of benchmark dose (BMD10 and BMDL10) calculations and no-observed-adverse-effect level (NOAEL) inspections of all available and reproducible rodent studies with oral BPA found BMD and NOAEL values all greater than the 5 mg/kg-d NOAELs from mouse and rat multigeneration reproduction toxicity studies. While allometric and physiologically based pharmacokinetic (PBPK) models were constructed for interspecies scaling of BPA and its interaction with ER, multigeneration feeding studies with BPA at doses spanning 5 orders of magnitude failed to identify signs of developmental toxicity or adverse changes in reproductive tract tissues; the 5-mg/kg-d NOAELs identified for systemic toxicity in rats and mice were less than the oral NOAELs for reproductive toxicity. Thus, it is the generalized systemic toxicity of ingested BPA rather than reproductive, immunologic, neurobehavioral, or genotoxic hazard that represents the point of departure. Using U.S. Environmental Protection Agency (EPA) uncertainty factor guidance and application of a threefold database uncertainty factor (to account for the fact that the carcinogenic potential of transplacental BPA exposure has yet to be fully defined and comprehensive neurobehavioral and immunotoxicologic evaluations of BPA by relevant routes and at relevant doses have yet to be completed) to the administered dose NOAEL results in an oral RfD of 0.016 mg/kg-d. Assuming the 70-kg adult consumes 2 L of water each day and adopting the default 20% U.S. EPA drinking water relative source contribution yields a 100 microg/L BPA total allowable concentration (TAC).


Subject(s)
Benchmarking , Phenols/toxicity , Water Pollutants, Chemical/toxicity , Water Supply/standards , Animals , Benzhydryl Compounds , Environmental Exposure/adverse effects , Female , Humans , Male , Mice , Models, Biological , No-Observed-Adverse-Effect Level , Phenols/pharmacokinetics , Rats , Risk Assessment , Species Specificity , United States , United States Environmental Protection Agency , Water Pollutants, Chemical/pharmacokinetics
9.
Birth Defects Res A Clin Mol Teratol ; 70(12): 902-11, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15558547

ABSTRACT

Regulatory agencies are increasingly called upon to review large numbers of environmental contaminants that have not been characterized for their potential to pose a health risk. Additionally, there is special interest in protecting potentially sensitive subpopulations and identifying developmental toxicants that may be present in the environment. Thus, there is an urgent need for efficient methods to screen large numbers of chemicals for their potential to pose a developmental hazard. One potential screening method involves the use of statistically based structure-activity relationship (SAR) tools to predict activity of untested chemicals. Such systems rely on statistical analyses to discern relationships between structure and activity for a training set of substances. Predictions can then be made for an untested substance as long as its structural features are encompassed by chemicals of the training set. In theory, such systems could assist regulatory agencies in their screening efforts; however, to date, there has been little independent evaluation of these tools for this use. To contribute to such an evaluation, the International Life Sciences Institute Risk Science Institute (ILSI RSI) convened a Working Group to examine methodology used to construct statistically based SAR systems for developmental toxicity. This document reports on the deliberations of the Working Group, which concluded that an improved process is needed for utilizing developmental toxicity data in the construction of statistically based SAR models. The process must be objective, reproducible, rational and transparent. Moreover, it must be informed by the expertise of developmental toxicologists and biologists and must be subject to peer review.


Subject(s)
Congenital Abnormalities/etiology , Models, Statistical , Teratogens/pharmacokinetics , Teratogens/toxicity , Fetal Development/drug effects , Humans , Risk Assessment , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...