Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Gastroenterol Hepatol ; 17(5): 853-876, 2024.
Article in English | MEDLINE | ID: mdl-38219900

ABSTRACT

BACKGROUND & AIMS: Proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling as a cause of cancer cell death is a well-established mechanism. However, TRAIL-receptor (TRAIL-R) agonists have had very limited anticancer activity in human beings, challenging the concept of TRAIL as a potent anticancer agent. Herein, we aimed to define mechanisms by which TRAIL+ cancer cells can leverage noncanonical TRAIL signaling in myeloid-derived suppressor cells (MDSCs) promoting their abundance in murine cholangiocarcinoma (CCA). METHODS: Multiple immunocompetent syngeneic, orthotopic models of CCA were used. Single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing of CD45+ cells in murine tumors from the different CCA models was conducted. RESULTS: In multiple immunocompetent murine models of CCA, implantation of TRAIL+ murine cancer cells into Trail-r-/- mice resulted in a significant reduction in tumor volumes compared with wild-type mice. Tumor-bearing Trail-r-/- mice had a significant decrease in the abundance of MDSCs owing to attenuation of MDSC proliferation. Noncanonical TRAIL signaling with consequent nuclear factor-κB activation in MDSCs facilitated enhanced MDSC proliferation. Single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing of immune cells from murine tumors showed enrichment of a nuclear factor-κB activation signature in MDSCs. Moreover, MDSCs were resistant to TRAIL-mediated apoptosis owing to enhanced expression of cellular FLICE inhibitory protein, an inhibitor of proapoptotic TRAIL signaling. Accordingly, cellular FLICE inhibitory protein knockdown sensitized murine MDSCs to TRAIL-mediated apoptosis. Finally, cancer cell-restricted deletion of Trail significantly reduced MDSC abundance and murine tumor burden. CONCLUSIONS: Our findings highlight the therapeutic potential of targeting TRAIL+ cancer cells for treatment of a poorly immunogenic cancer.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Myeloid-Derived Suppressor Cells , Humans , Mice , Animals , Myeloid-Derived Suppressor Cells/metabolism , NF-kappa B/metabolism , Ligands , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Apoptosis , Cholangiocarcinoma/drug therapy , Tumor Necrosis Factor-alpha/metabolism , Bile Ducts, Intrahepatic/metabolism , Epitopes
SELECTION OF CITATIONS
SEARCH DETAIL
...