Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Obesity (Silver Spring) ; 31(10): 2543-2556, 2023 10.
Article in English | MEDLINE | ID: mdl-37614163

ABSTRACT

OBJECTIVE: Obesity is a key risk factor for metabolic syndrome (MetS); however, >10% of lean individuals meet MetS criteria. Visceral adipose tissue (VAT) disproportionately contributes to inflammation and insulin resistance compared with subcutaneous fat depots. The primary aim of this study was to profile tissue microbiome components in VAT over a wide range of metabolic statuses in a highly clinically relevant model. METHODS: VAT was profiled from nonhuman primates that naturally demonstrate four distinct health phenotypes despite consuming a healthy diet, namely metabolically healthy lean and obese and metabolically unhealthy lean and obese. RESULTS: VAT biopsied from unhealthy lean and obese nonhuman primates demonstrated upregulation of immune signaling pathways, a tissue microbiome enriched in gram-negative bacteria including Pseudomonas, and deficiencies in anti-inflammatory adipose tissue M2 macrophages. VAT microbiomes were distinct from fecal microbiomes, and fecal microbiomes did not differ by metabolic health group, which was in contrast to the VAT bacterial communities. CONCLUSIONS: Immune activation with gram-negative VAT microbial communities is a consistent feature in elevated MetS risk in both lean and obesity states.


Subject(s)
Metabolic Syndrome , Obesity , Animals , Adipose Tissue , Biopsy , Primates
2.
Geroscience ; 45(5): 2785-2803, 2023 10.
Article in English | MEDLINE | ID: mdl-37261678

ABSTRACT

Cellular senescence increases with aging and results in secretion of pro-inflammatory factors that induce local and systemic tissue dysfunction. We conducted the first preclinical trial in a relevant middle-aged nonhuman primate (NHP) model to allow estimation of the main translatable effects of the senolytic combination dasatinib (D) and quercetin (Q), with and without caloric restriction (CR). A multi-systemic survey of age-related changes, including those on immune cells, adipose tissue, the microbiome, and biomarkers of systemic organ and metabolic health are reported. Age-, weight-, sex-, and glycemic control-matched NHPs (D + Q, n = 9; vehicle [VEH] n = 7) received two consecutive days of D + Q (5 mg/kg + 50 mg/kg) monthly for 6 months, where in month six, a 10% CR was implemented in both D + Q and VEH NHPs to induce equal weight reductions. D + Q reduced senescence marker gene expressions in adipose tissue and circulating PAI-1 and MMP-9. Improvements were observed in immune cell types with significant anti-inflammatory shifts and reductions in microbial translocation biomarkers, despite stable microbiomes. Blood urea nitrogen showed robust improvements with D + Q. CR resulted in significant positive body composition changes in both groups with further improvement in immune cell profiles and decreased GDF15 (p = 0.05), and the interaction of D + Q and CR dramatically reduced glycosylated hemoglobin A1c (p = 0.03). This work indicates that 6 months of intermittent D + Q exposure is safe and may combat inflammaging via immune benefits and improved intestinal barrier function. We also saw renal benefits, and with CR, improved metabolic health. These data are intended to provide direction for the design of larger controlled intervention trials in older patients.


Subject(s)
Quercetin , Senotherapeutics , Animals , Humans , Middle Aged , Aged , Dasatinib/pharmacology , Quercetin/pharmacology , Clinical Trials as Topic , Aging , Inflammation , Biomarkers , Primates
3.
J Obes ; 2023: 5651084, 2023.
Article in English | MEDLINE | ID: mdl-36714241

ABSTRACT

Objective: The objective of this study was to functionally analyze the correlation of key histological features in brown adipose tissue (BAT) with clinical metabolic traits in nonhuman primates. Methods: Axillary adipose tissue biopsies were collected from a metabolically diverse nonhuman primate cohort with clinical metabolism-related data. Expression of tyrosine hydroxylase (TH), uncoupling protein 1 (UCP1), cluster of differentiation 31 (CD31), cytochrome c oxidase subunit 4 (COX IV), beta-3 adrenergic receptor (ß3-AR), and adipose cell size were quantified by immunohistochemical analysis. Computed tomography scans were performed to assess body composition. Results: Tyrosine hydroxylase was negatively correlated with whole body fat mass as a percentage of body weight (p = 0.004) and was positively correlated with the density of UCP1 (p = 0.02), COX IV (p = 0.006), CD31 (p = 0.007), and cell density (p = 0.02) of the BAT samples. Beta-3 adrenergic receptor abundance had a weak positive correlation with COX IV (p = 0.04) in BAT but did not significantly correlate to UCP1 or TH expression in BAT. Conclusions: Our findings highlight that there is a disparity in innervation provided to BAT based on body composition, as seen with the negative association between TH, a marker for innervation, and adiposity. These findings also support the importance of innervation in the functionality of BAT, as TH abundance not only supports leaner body composition but is also positively correlated with known structural elements in BAT (UCP1, COX IV, CD31, and cell density). Based on our observations, ß3-AR abundance does not strongly drive these structural elements or TH, all of which are known to be important in the function of brown adipose tissue. In effect, while the role of other receptors, such as ß2-AR, should be reviewed in BAT function, these results support the development of safe sympathetic nervous system stimulants to activate brown adipose tissue for obesity treatment.


Subject(s)
Adipose Tissue, Brown , Receptors, Adrenergic, beta-3 , Animals , Adipose Tissue, Brown/innervation , Primates/metabolism , Receptors, Adrenergic, beta-3/metabolism , Thermogenesis/physiology , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/pharmacology , Uncoupling Protein 1/metabolism
4.
Geroscience ; 45(1): 507-521, 2023 02.
Article in English | MEDLINE | ID: mdl-36136223

ABSTRACT

The pathogenesis of many age-related diseases is linked to cellular senescence, a state of inflammation-inducing, irreversible cell cycle arrest. The consequences and mechanisms of age-associated cellular senescence are often studied using in vivo models of radiation exposure. However, it is unknown whether radiation induces persistent senescence, like that observed in ageing. We performed analogous studies in mice and monkeys, where young mice and rhesus macaques received sub-lethal doses of ionizing radiation and were observed for ~ 15% of their expected lifespan. Assessments of 8-hydroxy-2' -deoxyguanosine (8-OHdG), senescence-associated beta-galactosidase (SAß-gal), and p16Ink4a and p21 were performed on mitotic and post-mitotic tissues - liver and adipose tissue - 6 months and 3 years post-exposure for the mice and monkeys, respectively. No elevations in 8-OHdG, SA-ßgal staining, or p16 Ink4a or p21 gene or protein expression were found in mouse and monkey liver or adipose tissue compared to control animals. Despite no evidence of senescence, progenitor cell dysfunction persisted after radiation exposure, as indicated by lower in situ CD34+ adipose cells (p = 0.03), and deficient adipose stromal vascular cell proliferation (p < 0.05) and differentiation (p = 0.04) ex vivo. Our investigation cautions that employing radiation to study senescence-related processes should be limited to the acute post-exposure period and that stem cell damage likely underpins the dysfunction associated with delayed effects of radiation.


Subject(s)
Aging , Cellular Senescence , Animals , Mice , Macaca mulatta , Cellular Senescence/physiology , Adipose Tissue , Adipocytes , Cyclin-Dependent Kinase Inhibitor p16/metabolism
5.
Obesity (Silver Spring) ; 30(9): 1831-1841, 2022 09.
Article in English | MEDLINE | ID: mdl-35912825

ABSTRACT

OBJECTIVE: This study aimed to validate xenon-enhanced computed tomography (XECT) for the detection of brown adipose tissue (BAT) and to use XECT to assess differences in BAT distribution and perfusion between lean, obese, and diabetic nonhuman primates (NHPs). METHODS: Whole-body XECT imaging was performed in anesthetized rhesus and vervet monkeys during adrenergic stimulation of BAT thermogenesis. In XECT images, BAT was identified as fat tissue that, during xenon inhalation, underwent significant radiodensity enhancement compared with subcutaneous fat. To measure BAT blood flow, BAT radiodensity enhancement was measured over time on the six computed tomography scans acquired during xenon inhalation. Postmortem immunohistochemical staining was used to confirm imaging findings. RESULTS: XECT was able to correctly identify all BAT depots that were confirmed at necropsy, enabling construction of the first comprehensive anatomical map of BAT in NHPs. A significant decrease in BAT perfusion was found in diabetic animals compared with obese animals and healthy animals, as well as absence of axillary BAT and significant reduction of supraclavicular BAT in diabetic animals compared with obese and lean animals. CONCLUSIONS: The use of XECT in NHP models of obesity and diabetes allows the analysis of the impact of metabolic status on BAT mass and perfusion.


Subject(s)
Adipose Tissue, Brown , Diabetes Mellitus , Adipose Tissue, Brown/metabolism , Animals , Chlorocebus aethiops , Diabetes Mellitus/diagnostic imaging , Diabetes Mellitus/metabolism , Obesity/diagnostic imaging , Obesity/metabolism , Perfusion , Primates , Tomography, X-Ray Computed/methods , Xenon/metabolism
6.
Ecol Appl ; 31(3): e02259, 2021 04.
Article in English | MEDLINE | ID: mdl-33179379

ABSTRACT

About 70% of the world's main crops depend on insect pollination. Climate change is already affecting the abundance and distribution of insects, which could cause geographical mismatches between crops and their pollinators. Crops that rely primarily on wild pollinators (e.g., crops that cannot be effectively pollinated by commercial colonies of honey bees) could be particularly in jeopardy. However, limited information on plant-pollinator associations and pollinator distributions complicate the assessment of climate change impacts on specific crops. To study the potential impacts of climate change on pollination of a specific crop in North America, we use the case of open-field tomato crops, which rely on buzz pollinators (species that use vibration to release pollen, such as bumble bees) to increase their production. We aimed to (1) assess potential changes in buzz pollinator distribution and richness, and (2) evaluate the overlap between areas with high densities of tomato crops and high potential decrease in richness. We used baseline (1961-1990) climate and future (2050s and 2080s) climatic projections in ecological niche models fitted with occurrences of wild bees, documented in the literature as pollinators of tomatoes, to estimate the baseline and future potential distribution of suitable climatic conditions of targeted species and to create maps of richness change across North America. We obtained reliable models for 15 species and found important potential decreases in the distribution of some pollinators (e.g., Lasioglossum pectorale and Augochlorella aurata). We observed geographical discrepancies in the projected change in species richness across North America, detecting important declines in the eastern United States (up to 11 species decrease for 2050s). After overlapping the maps of species richness change with a tomato crop map for the United States, we found spatial correspondence between richness declines and areas with high concentration of tomato crops. Disparities in the effects of climate change on the potential future distribution of different wild pollinators and geographical variation in richness highlight the importance of crop-specific studies. Our study also emphasizes the challenges of compiling and modeling crop-specific pollinator data and the need to improve our understanding of current distribution of pollinators and their community dynamics under climate change.


Subject(s)
Climate Change , Solanum lycopersicum , Animals , Bees , Crops, Agricultural , North America , Pollination
SELECTION OF CITATIONS
SEARCH DETAIL
...