Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Res ; 101(11): 1757-1769, 2023 11.
Article in English | MEDLINE | ID: mdl-37571837

ABSTRACT

Obesity increases the risk for stroke and is associated with worse post-stroke outcomes; however, the mechanisms are poorly understood. Diet-induced obesity leads to insulin resistance and subsequently, brain insulin deficiency. The purpose of this study was to investigate the potential impact of brain insulin deficiency on post-stroke outcomes. To accomplish this, brain insulin levels were assessed in male C57BL/6J (B6) mice placed on either a standard diet or 54% kcal high-fat diet, a known model of insulin resistance. Mice were subjected to either a sham surgery (control) or 30-min middle cerebral artery occlusion to induce an ischemic stroke and administered either intranasal saline (0.9%) or intranasal insulin (1.75 U) twice daily for 5 days beginning on day 1 post-stroke. High-fat diet-induced brain insulin deficiency was associated with increased mortality, neurological and cognitive deficits. On the other hand, increasing brain insulin levels via intranasal insulin improved survival, neurological and cognitive function in high-fat diet mice. Our data suggests that brain insulin deficiency correlates with worse post-stroke outcomes in a diet-induced mouse model of insulin resistance and increasing brain insulin levels may be a therapeutic target to improve stroke recovery.


Subject(s)
Cognitive Dysfunction , Insulin Resistance , Stroke , Mice , Male , Animals , Insulin , Mice, Inbred C57BL , Brain , Stroke/complications , Stroke/drug therapy , Obesity , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Diet, High-Fat/adverse effects
2.
Diab Vasc Dis Res ; 19(4): 14791641221118626, 2022.
Article in English | MEDLINE | ID: mdl-35975361

ABSTRACT

Insulin receptors are internalized by endothelial cells to facilitate their physiological processes; however, the impact of hyperinsulinemia in brain endothelial cells is not known. Thus, the aim of this study was to elucidate the impact hyperinsulinemia plays on insulin receptor internalization through changes in phosphorylation, as well as the potential impact of protein tyrosine phosphatase 1B (PTP1B). Hippocampal microvessels were isolated from high-fat diet fed mice and assessed for insulin signaling activation, a process known to be involved with receptor internalization. Surface insulin receptors in brain microvascular endothelial cells were labelled to assess the role hyperinsulinemia plays on receptor internalization in response to stimulation, with and without the PTP1B antagonist, Claramine. Our results indicated that insulin receptor levels increased in tandem with decreased receptor signaling in the high-fat diet mouse microvessels. Insulin receptors of cells subjected to hyperinsulinemic treatment demonstrate splice variation towards decreased IR-A mRNA expression and demonstrate a higher membrane-localized proportion. This corresponded with decreased autophosphorylation at sites critical for receptor internalization and signaling. Claramine restored signaling and receptor internalization in cells treated with hyperinsulinemia. In conclusion, hyperinsulinemia impacts brain microvascular endothelial cell insulin receptor signaling and internalization, likely via alternative splicing and increased negative feedback from PTP1B.


Subject(s)
Hyperinsulinism , Receptor, Insulin , Animals , Brain , Endothelial Cells/metabolism , Insulin/metabolism , Mice , Phosphorylation , Receptor, Insulin/genetics , Receptor, Insulin/metabolism
3.
Am J Physiol Heart Circ Physiol ; 323(3): H378-H387, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35802516

ABSTRACT

The purpose of this study was to generate a quantitative profile of electrocardiograms (ECGs) for confirming surgical success of permanent coronary artery ligation. An ECG was recorded at baseline, and 0, 1, and 5 min after ligation and analyzed using iWorkx LabScribe software. Cohort 1 (C57Bl6/J, n = 8/sex) was enrolled to determine ECG characteristics that were confirmed in cohort 2 (C57Bl6/J, n = 6/sex; CD8-/-n = 6 males/4 females). Of the 16 mice in cohort 1, 12 (6/sex) had an infarct ≥35% and four mice (2/sex) had <35% based on 2,3,5-triphenyltetrazolium chloride staining. After ligation, the QRS complex and R-S amplitude were significantly different compared with baseline. No differences were observed in the R-S amplitude between mice with infarcts ≥35% versus <35% at any time point, whereas the QRS complex was significant 1 min after ligation. Receiver operating characteristic (ROC) curve linked changes in the QRS complex but not the R-S amplitude at 1 and 5 min with surgical success. Data were normalized to baseline values to calculate fold change. ROC analysis of the normalized QRS data indicated strong sensitivity and specificity for infarcts ≥35%; normalized R-S amplitude remained nonsignificant. With a cutoff generated by ROC analysis of cohort 1 (>80% sensitivity; >90% specificity), the non-normalized QRS complex of cohort 2 had an 86% success rate (2 false positives; 1 false negative). The normalized data had a 77% success rate (2 false positives; 3 false negatives). Neither sex nor genotype was associated with false predictions (P = 0.18). Our data indicate that the area under the QRS complex 1 min after ligation can improve reproducibility in MI surgeries.NEW & NOTEWORTHY Our study describes a quantitative method for using an electrocardiogram (ECG) to determine which animals have infarcts that reflect coronary artery ligation. Using a quantitative ECG, investigators will have the benefit of having real-time feedback during the procedure, which will ultimately decrease the amount of time investigators spend performing experiments. This overall increase in efficiency will help investigators decrease animal numbers used due to better surgical outcomes.


Subject(s)
Electrocardiography , Myocardial Infarction , Animals , Female , Humans , Male , Mice , Myocardial Infarction/diagnosis , ROC Curve , Reproducibility of Results , Sensitivity and Specificity
4.
Neurobiol Learn Mem ; 175: 107296, 2020 11.
Article in English | MEDLINE | ID: mdl-32784042

ABSTRACT

Obesity, neurodegenerative diseases, and injury can all lead to cognitive deficits, which can be improved clinically with the implementation of cognitive rehabilitation. Due to a lack of effective cognitive rehabilitation tools in mice, we re-designed a cognitive task utilized to detect problem-solving deficits, to develop a cognitive rehabilitation paradigm for mice. In this study, we developed a modified the Puzzle Box task by exposing B6 mice to a variety of obstacles and assessing the escape latencies. We then combined obstacles in order to create a "complex obstacle" for the problem-solving task. We determined that our task was reproducible in different cohorts of mice. Furthermore, with repetition the mice display an improvement in the performance, evident by a shorter escape latency and the ability to maintain this improvement in performance, indicative of long-term memory. Given that this approach is new, we validated whether this task could successfully detect deficits in a mouse model of cognitive impairment, the high-fat diet mouse. We demonstrate that high-fat diet mice have longer escape latencies when exposed to the complex obstacle compared to standard diet control mice. Taken together, these data suggest that the Puzzle Box is a valid task for cognitive rehabilitation in mice.


Subject(s)
Cognitive Dysfunction/rehabilitation , Cognitive Remediation/methods , Problem Solving , Animals , Cognitive Dysfunction/physiopathology , Diet, High-Fat , Memory, Long-Term , Mice , Reproducibility of Results
5.
Behav Brain Res ; 382: 112454, 2020 03 16.
Article in English | MEDLINE | ID: mdl-31926214

ABSTRACT

Research on the impact of diet and memory has garnered considerable attention while exploring the link between obesity and cognitive impairment. High-fat diet (HFD) rodent models recapitulate the obesity phenotype and subsequent cognitive impairments. While it is known that HFD is associated with sensory impairment, little attention has been given to the potential role these sensory deficits may play in recognition memory testing, one of the most commonly used cognitive tests. Because mice utilize their facial whiskers as their primary sensory apparatus, we modified a common recognition test, the novel object recognition task, by replacing objects with sandpaper grits at ground level, herein referred to as the novel tactile recognition task (NTR). First, we tested whisker-manipulated mice in this task to determine its reliance on intact whiskers. Then, we tested the HFD mouse in the NTR. Finally, to ensure that deficits in the NTR are due to cognitive impairment and not HFD-induced sensory deficiencies, we tested the whisker sensitivity of HFD mice via the corner test. Our results indicate that the NTR is a whisker dependent task, and that HFD mice exhibit tactile recognition memory impairment, not accompanied by whisker sensory deficits.


Subject(s)
Diet, High-Fat , Discrimination, Psychological , Memory , Recognition, Psychology , Touch , Animals , Behavior, Animal , Cognitive Dysfunction/etiology , Male , Mice, Inbred C57BL , Physical Stimulation , Touch Perception , Vibrissae
SELECTION OF CITATIONS
SEARCH DETAIL
...