Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Scand J Med Sci Sports ; 34(3): e14581, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38511417

ABSTRACT

The International Olympic Committee (IOC) recently published a framework on fairness, inclusion, and nondiscrimination on the basis of gender identity and sex variations. Although we appreciate the IOC's recognition of the role of sports science and medicine in policy development, we disagree with the assertion that the IOC framework is consistent with existing scientific and medical evidence and question its recommendations for implementation. Testosterone exposure during male development results in physical differences between male and female bodies; this process underpins male athletic advantage in muscle mass, strength and power, and endurance and aerobic capacity. The IOC's "no presumption of advantage" principle disregards this reality. Studies show that transgender women (male-born individuals who identify as women) with suppressed testosterone retain muscle mass, strength, and other physical advantages compared to females; male performance advantage cannot be eliminated with testosterone suppression. The IOC's concept of "meaningful competition" is flawed because fairness of category does not hinge on closely matched performances. The female category ensures fair competition for female athletes by excluding male advantages. Case-by-case testing for transgender women may lead to stigmatization and cannot be robustly managed in practice. We argue that eligibility criteria for female competition must consider male development rather than relying on current testosterone levels. Female athletes should be recognized as the key stakeholders in the consultation and decision-making processes. We urge the IOC to reevaluate the recommendations of their Framework to include a comprehensive understanding of the biological advantages of male development to ensure fairness and safety in female sports.


Subject(s)
Sports Medicine , Sports , Female , Humans , Male , Gender Identity , Athletes , Testosterone
3.
Int J Sports Med ; 44(13): 941-960, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37253386

ABSTRACT

The aim of this review was to critically appraise the literature concerning the genetic association with athlete status, physical performance, and injury risk in soccer. The objectives were to provide guidance on which genetic markers could potentially be used as part of future practice in soccer and to provide direction for future research in this area. The most compelling evidence identified six genetic polymorphisms to be associated with soccer athlete status (ACE I/D; ACTN3 rs1815739; AGT rs699; MCT1 rs1049434; NOS3 rs2070744; PPARA rs4253778), six with physical performance (ACTN3 rs1815739; AMPD1 rs17602729; BDNF rs6265; COL2A1 rs2070739; COL5A1 rs12722; NOS3 rs2070744), and seven with injury risk (ACTN3 rs1815739; CCL2 rs2857656; COL1A1 rs1800012; COL5A1 rs12722; EMILIN1 rs2289360; IL6 rs1800795; MMP3 rs679620). As well as replication by independent groups, large-scale genome-wide association studies are required to identify new genetic markers. Future research should also investigate the physiological mechanisms associating these polymorphisms with specific phenotypes. Further, researchers should investigate the above associations in female and non-Caucasian soccer players, as almost all published studies have recruited male participants of European ancestry. Only after robust, independently replicated genetic data have been generated, can genetic testing be considered an additional tool to potentially inform future practice in soccer.


Subject(s)
Soccer , Humans , Male , Female , Soccer/physiology , Genome-Wide Association Study , Genetic Markers , Genotype , Athletes , Actinin/genetics , Physical Functional Performance
4.
J Sports Sci ; 41(1): 56-62, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37012221

ABSTRACT

Success in long-distance running relies on multiple factors including oxygen utilisation and lactate metabolism, and genetic associations with athlete status suggest elite competitors are heritably predisposed to superior performance. The Gly allele of the PPARGC1A Gly482Ser rs8192678 polymorphism has been associated with endurance athlete status and favourable aerobic training adaptations. However, the association of this polymorphism with performance amongst long-distance runners remains unclear. Accordingly, this study investigated whether rs8192678 was associated with elite status and competitive performance of long-distance runners. Genomic DNA from 656 Caucasian participants including 288 long-distance runners (201 men, 87 women) and 368 non-athletes (285 men, 83 women) was analysed. Medians of the 10 best UK times (Top10) for 10 km, half-marathon and marathon races were calculated, with all included athletes having personal best (PB) performances within 20% of Top10 (this study's definition of "elite"). Genotype and allele frequencies were compared between athletes and non-athletes, and athlete PB compared between genotypes. There were no differences in genotype frequency between athletes and non-athletes, but athlete Ser allele carriers were 2.5% faster than Gly/Gly homozygotes (p = 0.030). This study demonstrates that performance differences between elite long-distance runners are associated with rs8192678 genotype, with the Ser allele appearing to enhance performance.


Subject(s)
Physical Endurance , Running , Male , Humans , Female , Physical Endurance/genetics , Polymorphism, Genetic , Gene Frequency , Genotype , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
5.
J Strength Cond Res ; 37(4): 799-805, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36763468

ABSTRACT

ABSTRACT: Dines, HR, Nixon, J, Lockey, SJ, Herbert, AJ, Kipps, C, Pedlar, CR, Day, SH, Heffernan, SM, Antrobus, MR, Brazier, J, Erskine, RM, Stebbings, GK, Hall, ECR, and Williams, AG. Collagen gene polymorphisms previously associated with resistance to soft-tissue injury are more common in competitive runners than nonathletes. J Strength Cond Res 37(4): 799-805, 2023-Single-nucleotide polymorphisms (SNPs) of collagen genes have been associated with soft-tissue injury and running performance. However, their combined contribution to running performance is unknown. We investigated the association of 2 collagen gene SNPs with athlete status and performance in 1,429 Caucasian subjects, including 597 competitive runners (354 men and 243 women) and 832 nonathletes (490 men and 342 women). Genotyping for COL1A1 rs1800012 (C > A) and COL5A1 rs12722 (C > T) SNPs was performed by a real-time polymerase chain reaction. The numbers of "injury-resistant" alleles from each SNP, based on previous literature (rs1800012 A allele and rs12722 C allele), were combined as an injury-resistance score (RScore, 0-4; higher scores indicate injury resistance). Genotype frequencies, individually and combined as an RScore, were compared between cohorts and investigated for associations with performance using official race times. Runners had 1.34 times greater odds of being rs12722 CC homozygotes than nonathletes (19.7% vs. 15.5%, p = 0.020) with no difference in the rs1800012 genotype distribution ( p = 0.659). Fewer runners had an RScore 0 of (18.5% vs. 24.7%) and more had an RScore of 4 (0.6% vs. 0.3%) than nonathletes ( p < 0.001). Competitive performance was not associated with the COL1A1 genotype ( p = 0.933), COL5A1 genotype ( p = 0.613), or RScore ( p = 0.477). Although not associated directly with running performance among competitive runners, a higher combined frequency of injury-resistant COL1A1 rs1800012 A and COL5A1 rs12722 C alleles in competitive runners than nonathletes suggests these SNPs may be advantageous through a mechanism that supports, but does not directly enhance, running performance.


Subject(s)
Running , Soft Tissue Injuries , Male , Humans , Female , Collagen Type V/genetics , Genotype , Collagen/genetics , Polymorphism, Single Nucleotide
6.
Eur J Sport Sci ; 23(5): 726-735, 2023 May.
Article in English | MEDLINE | ID: mdl-35293840

ABSTRACT

There is growing evidence of genetic contributions to tendon and ligament pathologies. Given the high incidence and severity of tendon and ligament injuries in elite rugby, we studied whether 13 gene polymorphisms previously associated with tendon/ligament injury were associated with elite athlete status. Participants from the RugbyGene project were 663 elite Caucasian male rugby athletes (RA) (mean (standard deviation) height 1.85 (0.07) m, mass 101 (12) kg, age 29 (7) yr), including 558 rugby union athletes (RU) and 105 rugby league athletes. Non-athletes (NA) were 909 Caucasian men and women (56% female; height 1.70 (0.10) m, mass 72 (13) kg, age 41 (23) yr). Genotypes were determined using TaqMan probes and groups compared using Χ2 and odds ratio (OR). COLGALT1 rs8090 AA genotype was more frequent in RA (27%) than NA (23%; P = 0.006). COL3A1 rs1800255 A allele was more frequent in RA (26%) than NA (23%) due to a greater frequency of GA genotype (39% vs 33%). For MIR608 rs4919510, RA had 1.7 times the odds of carrying the CC genotype compared to NA. MMP3 rs591058 TT genotype was less common in RA (25.1%) than NA (31.2%; P < 0.04). For NID1 rs4660148, RA had 1.6 times the odds of carrying the TT genotype compared to NA. It appears that elite rugby athletes have an inherited advantage that contributes to their elite status, possibly via resistance to soft tissue injury. These data may, in future, assist personalised management of injury risk amongst athletes.Highlights The elite rugby athletes we studied had differing genetic characteristics to non-athletes regarding genetic variants previously associated with soft-tissue injury risk.COLGALT1 rs8090, COL3A1 rs1800255, MIR608 rs4919510, MMP3 rs591058 and NID1 rs4660148 were all associated with elite status in rugby.We propose that elite rugby athletes might possess an inherited resistance to soft tissue injury, which has enabled them to achieve elite status despite exposure to the high-risk environment of elite rugby.


Subject(s)
Football , MicroRNAs , Soft Tissue Injuries , Humans , Male , Female , Adult , Matrix Metalloproteinase 3 , Rugby , Alleles , Soft Tissue Injuries/genetics
7.
Clin J Sport Med ; 33(5): e145-e151, 2023 09 01.
Article in English | MEDLINE | ID: mdl-35350037

ABSTRACT

OBJECTIVE: Concussions are common match injuries in elite rugby, and reports exist of reduced cognitive function and long-term health consequences that can interrupt or end a playing career and produce continued ill health. The aim of this study was to investigate the association between elite rugby status and 8 concussion-associated risk polymorphisms. We hypothesized that concussion-associated risk genotypes and alleles would be underrepresented in elite rugby athletes compared with nonathletes. DESIGN: A case-control genetic association study. SETTING: Institutional (university). PARTICIPANTS: Elite White male rugby athletes [n = 668, mean (SD) height 1.85 (0.07) m, mass 102 (12) kg, and age 29 (7) years] and 1015 nonathlete White men and women (48% men). INTERVENTIONS: Genotype was the independent variable, obtained by PCR of genomic DNA using TaqMan probes. MAIN OUTCOME MEASURE: Elite athlete status with groups compared using χ 2 and odds ratio (OR). RESULTS: The COMT rs4680 Met/Met (AA) genotype, Met allele possession, and Met allele frequency were lower in rugby athletes (24.8%, 74.6%, and 49.7%, respectively) than nonathletes (30.2%, 77.6%, and 54.0%; P < 0.05). The Val/Val (GG) genotype was more common in elite rugby athletes than nonathletes (OR 1.39, 95% confidence interval 1.04-1.86). No other polymorphism was associated with elite athlete status. CONCLUSIONS: Elite rugby athlete status is associated with COMT rs4680 genotype that, acting pleiotropically, could affect stress resilience and behavioral traits during competition, concussion risk, and/or recovery from concussion. Consequently, assessing COMT rs4680 genotype might aid future individualized management of concussion risk among athletes.


Subject(s)
Brain Concussion , Football , Humans , Male , Female , Adult , Rugby , Football/injuries , Brain Concussion/genetics , Brain Concussion/psychology , Polymorphism, Genetic , Athletes , Catechol O-Methyltransferase/genetics
8.
Eur J Sport Sci ; 23(8): 1779-1788, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36503489

ABSTRACT

Part 1 of this genetic association series highlighted several genetic variants independently associated with elite status in rugby. However, it is highly likely that the genetic influence on elite status is polygenic due to the interaction of multiple genes. Therefore, the aim of the present study was to investigate whether polygenic profiles of elite rugby athletes differed from non-athletes utilising 13 genetic polymorphisms previously associated with tendon/ligament injury. Total genotype score (TGS) was calculated and multifactor dimensionality reduction (MDR) was used to calculate SNP-SNP epistasis interactions. Based on our elite rugby data from Part 1, mean TGS was significantly higher in elite rugby athletes (52.1 ± 10.7) than non-athletes (48.7 ± 10.8). There were more elite rugby athletes (54%) within the upper TGS quartile, and fewer (46%) within the lower quartile, compared to non-athletes (31% and 69%, respectively; P = 5·10-5), and the TGS was able to distinguish between elite rugby athletes and non-athletes (area under the curve = 0.59; 95% confidence interval 0.55-0.63; P = 9·10-7). Furthermore, MDR identified a three-SNP model of COL5A1 rs12722, COL5A1 rs3196378 and MIR608 rs4919510 that was best able to predict elite athlete status, with a greater frequency of the CC-CC-CC genotype combination in elite rugby athletes (9.8%) than non-athletes (5.3%). We propose that elite rugby athletes possess "preferable" musculoskeletal soft-tissue injury-associated polygenic profiles that have helped them achieve success in the high injury risk environment of rugby. These data may, in future, have implications for the individual management of musculoskeletal soft-tissue injury.HighlightsElite rugby athletes have preferable polygenic profiles to non-athletes in terms of genetic variants previously associated with musculoskeletal soft-tissue injury.The total genotype score was able to distinguish between elite rugby athletes and non-athletes.COL5A1 rs12722, COL5A1 rs3196378 and MIR608 rs4919510 produced the best model for predicting elite athlete status.We propose that elite rugby athletes may have an inherited advantage to achieving elite status due to an increased resistance to soft-tissue injury.


Subject(s)
MicroRNAs , Rugby , Humans , Genotype , Athletes
9.
Genes (Basel) ; 13(6)2022 05 30.
Article in English | MEDLINE | ID: mdl-35741744

ABSTRACT

Background: Heritability explains 45-82% of muscle mass and strength variation, yet polygenic models for muscle phenotypes in older women are scarce. Therefore, the objective of the present study was to (1) assess if total genotype predisposition score (GPSTOTAL) for a set of polymorphisms differed between older women with low and high muscle mass, and (2) utilise a data-driven GPS (GPSDD) to predict the variance in muscle size and strength-related phenotypes. Methods: In three-hundred 60- to 91-year-old Caucasian women (70.7 ± 5.7 years), skeletal muscle mass, biceps brachii thickness, vastus lateralis anatomical cross-sectional area (VLACSA), hand grip strength (HGS), and elbow flexion (MVCEF) and knee extension (MVCKE) maximum voluntary contraction were measured. Participants were classified as having low muscle mass if the skeletal muscle index (SMI) < 6.76 kg/m2 or relative skeletal muscle mass (%SMMr) < 22.1%. Genotyping was completed for 24 single-nucleotide polymorphisms (SNPs). GPSTOTAL was calculated from 23 SNPs and compared between the low and high muscle mass groups. A GPSDD was performed to identify the association of SNPs with other skeletal muscle phenotypes. Results: There was no significant difference in GPSTOTAL between low and high muscle mass groups, irrespective of classification based on SMI or %SMMr. The GPSDD model, using 23 selected SNPs, revealed that 13 SNPs were associated with at least one skeletal muscle phenotype: HIF1A rs11549465 was associated with four phenotypes and, in descending number of phenotype associations, ACE rs4341 with three; PTK2 rs7460 and CNTFR rs2070802 with two; and MTHFR rs17421511, ACVR1B rs10783485, CNTF rs1800169, MTHFR rs1801131, MTHFR rs1537516, TRHR rs7832552, MSTN rs1805086, COL1A1 rs1800012, and FTO rs9939609 with one phenotype. The GPSDD with age included as a predictor variable explained 1.7% variance of biceps brachii thickness, 12.5% of VLACSA, 19.0% of HGS, 8.2% of MVCEF, and 9.6% of MVCKE. Conclusions: In older women, GPSTOTAL did not differ between low and high muscle mass groups. However, GPSDD was associated with muscle size and strength phenotypes. Further advancement of polygenic models to understand skeletal muscle function during ageing might become useful in targeting interventions towards older adults most likely to lose physical independence.


Subject(s)
Hand Strength , Multifactorial Inheritance , Muscle, Skeletal , Aged , Aged, 80 and over , Female , Genotype , Humans , Middle Aged , Muscle, Skeletal/physiology , Polymorphism, Single Nucleotide
10.
Genes (Basel) ; 13(5)2022 05 04.
Article in English | MEDLINE | ID: mdl-35627205

ABSTRACT

Due to the high-velocity collision-based nature of elite rugby league and union, the risk of sustaining a concussion is high. Occurrence of and outcomes following a concussion are probably affected by the interaction of multiple genes in a polygenic manner. This study investigated whether suspected concussion-associated polygenic profiles of elite rugby athletes differed from non-athletes and between rugby union forwards and backs. We hypothesised that a total genotype score (TGS) using eight concussion-associated polymorphisms would be higher in elite rugby athletes than non-athletes, indicating selection for protection against incurring or suffering prolonged effects of, concussion in the relatively high-risk environment of competitive rugby. In addition, multifactor dimensionality reduction was used to identify genetic interactions. Contrary to our hypothesis, TGS did not differ between elite rugby athletes and non-athletes (p ≥ 0.065), nor between rugby union forwards and backs (p = 0.668). Accordingly, the TGS could not discriminate between elite rugby athletes and non-athletes (AUC ~0.5), suggesting that, for the eight polymorphisms investigated, elite rugby athletes do not have a more 'preferable' concussion-associated polygenic profile than non-athletes. However, the COMT (rs4680) and MAPT (rs10445337) GC allele combination was more common in rugby athletes (31.7%; p < 0.001) and rugby union athletes (31.8%; p < 0.001) than non-athletes (24.5%). Our results thus suggest a genetic interaction between COMT (rs4680) and MAPT (rs10445337) assists rugby athletes in achieving elite status. These findings need exploration vis-à-vis sport-related concussion injury data and could have implications for the management of inter-individual differences in concussion risk.


Subject(s)
Athletic Injuries , Brain Concussion , Multifactorial Inheritance , Rugby , Athletes , Athletic Injuries/genetics , Brain Concussion/genetics , Humans , Male , Rugby/injuries
11.
Phys Ther Sport ; 55: 111-118, 2022 May.
Article in English | MEDLINE | ID: mdl-35325670

ABSTRACT

OBJECTIVES: To investigate if maturity status was associated with injury risk in male academy soccer players. DESIGN: Prospective cohort surveillance study. SETTING: Professional soccer academies. PARTICIPANTS: 501 players (aged 9-23 years) from eight academies in England, Spain, Uruguay and Brazil. MAIN OUTCOME MEASURES: Players were grouped by maturity offset as pre-peak height velocity (PHV), circa-PHV, post-PHV or adult. Injury prevalence proportion (IPP) and days missed were recorded for one season per player, with training/match exposure recorded in a sub-sample (n = 166). RESULTS: IPP for all injuries combined increased with advancing maturity, with circa-PHV (p = 0.032), post-PHV (p < 0.001) and adult (p < 0.001) higher than pre-PHV. IPP was higher in post-PHV and adult than pre-PHV for non-contact (p = 0.001 and p = 0.012), soft-tissue (both p < 0.001), non-contact soft-tissue (p < 0.001 and p = 0.005), muscle (both p < 0.001), thigh (both p < 0.001), ankle (p = 0.035 and p = 0.007) and hamstring injuries (p = 0.041 and p = 0.017). Ligament/tendon IPP was greater in adult versus pre-PHV (p = 0.002). IPP for growth-related injuries was lower in post-PHV than pre-PHV (p = 0.039). Injury incidence rates (n = 166) exhibited similar patterns to IPP in the full cohort. CONCLUSIONS: Injury patterns were similar between post-PHV and adult academy players but, crucially, relatively more of these groups suffered injuries compared to pre- and circa-PHV (except growth-related injuries).


Subject(s)
Athletic Injuries , Leg Injuries , Soccer , Tendon Injuries , Adult , Athletic Injuries/epidemiology , Humans , Incidence , Male , Prospective Studies , Soccer/injuries
12.
J Athl Train ; 57(7): 696-703, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35142844

ABSTRACT

CONTEXT: Whether playing position influences injury in male academy soccer players (ASPs) is unclear. OBJECTIVE: To determine if playing position was associated with injury in ASPs. DESIGN: Descriptive epidemiology study. SETTING: English, Spanish, Uruguayan, and Brazilian soccer academies. PATIENTS OR OTHER PARTICIPANTS: A total of 369 ASPs from the under-14 to under-23 age groups, classified as post-peak height velocity using maturity offset, and grouped as goalkeepers, lateral defenders, central defenders, lateral midfielders, central midfielders, or forwards. MAIN OUTCOME MEASURE(S): Injuries were recorded prospectively over 1 season. Injury prevalence proportion (IPP), days missed, and injury incidence rate (IIR, injuries/1000 training or match hours, n = 116) were analyzed according to playing position. RESULTS: No association with playing position was observed for any injury type or location regarding IPP (P ≥ .089) or days missed (P ≥ .235). The IIR was higher in central defenders than in lateral defenders for general (9.30 versus 4.18 injuries/1000 h, P = .009), soft tissue (5.14 versus 1.95 injuries/1000 h, P = .026), and ligament or tendon injuries (2.69 versus 0.56 injuries/1000 h, P = .040). The central versus lateral or forward positions were not associated with IPP (P ≥ .051) or days missed (P ≥ .083), but general IIR was greater in the central position than the lateral or forward positions (8.67 versus 6.12 injuries/1000 h, P = .047). CONCLUSIONS: Academy soccer players' playing positions were not associated with IPP or days missed, but the higher general, soft tissue, and ligament or tendon IIRs in central defenders suggest that this position warrants specific attention regarding injury-prevention strategies. These novel findings highlight the importance of considering training or match exposure when investigating the influence of playing position on injury in ASPs.


Subject(s)
Soccer , Brazil , Humans , Incidence , Male , Soccer/injuries
13.
J Strength Cond Res ; 36(9): 2509-2514, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-33278272

ABSTRACT

ABSTRACT: Moreland, E, Borisov, OV, Semenova, EA, Larin, AK, Andryushchenko, ON, Andryushchenko, LB, Generozov, EV, Williams, AG, and Ahmetov, II. Polygenic profile of elite strength athletes. J Strength Cond Res 36(9): 2509-2514, 2022-Strength is a heritable trait with unknown polygenic nature. So far, more than 200 DNA polymorphisms associated with strength/power phenotypes have been identified majorly involving nonathletic populations. The aim of the present study was to investigate individually and in combination the association of 217 DNA polymorphisms previously identified as markers for strength/power phenotypes with elite strength athlete status. A case-control study involved 83 Russian professional strength athletes (53 weightlifters, 30 powerlifters), 209 Russian and 503 European controls. Genotyping was conducted using micro-array analysis. Twenty-eight DNA polymorphisms (located near or in ABHD17C , ACTG1 , ADCY3 , ADPGK , ANGPT2 , ARPP21 , BCDIN3D , CRTAC1 , DHODH , GBE1 , IGF1 , IL6 , ITPR1 , KIF1B , LRPPRC , MMS22L , MTHFR , NPIPB6 , PHACTR1 , PLEKHB1 , PPARG , PPARGC1A , R3HDM1 , RASGRF1 , RMC1 , SLC39A8 , TFAP2D , ZKSCAN5 genes) were identified to have an association with strength athlete status. Next, to assess the combined impact of all 28 DNA polymorphisms, all athletes were classified according to the number of "strength" alleles they possessed. All highly elite strength athletes were carriers of at least 22 (up to 34) "strength" alleles, whereas 27.8% of Russian controls had less than 22 "strength" alleles ( p < 0.0001). The proportion of subjects with a high (≥26) number of "strength" alleles was significantly greater in highly elite strength athletes (84.8%) compared with less successful strength athletes (64.9%; odd ratio [OR] = 3.0, p = 0.042), Russian (26.3%; OR = 15.6, p < 0.0001) or European (37.8%; OR = 6.4, p < 0.0001) controls. This is the first study to demonstrate that the likelihood of becoming an elite strength athlete depends on the carriage of a high number of strength-related alleles.


Subject(s)
Athletes , Polymorphism, Genetic , Alleles , Calcium-Binding Proteins , Case-Control Studies , DNA/genetics , Genotype , Humans , Transcription Factor AP-2
14.
Scand J Med Sci Sports ; 32(2): 338-350, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34633711

ABSTRACT

It is currently unknown if injury risk is associated with genetic variation in academy soccer players (ASP). We investigated whether nine candidate single nucleotide polymorphisms were associated (individually and in combination) with injury in ASP at different stages of maturation. Saliva samples and one season's injury records were collected from 402 Caucasian male ASP from England, Spain, Uruguay, and Brazil, whose maturity status was defined as pre- or post-peak height velocity (PHV). Pre-PHV COL5A1 rs12722 CC homozygotes had relatively higher prevalence of any musculoskeletal soft tissue (22.4% vs. 3.0%, p = 0.018) and ligament (18.8% vs. 11.8%, p = 0.029) injury than T-allele carriers, while VEGFA rs2010963 CC homozygotes had greater risk of ligament/tendon injury than G-allele carriers. Post-PHV IL6 rs1800795 CC homozygotes had a relatively higher prevalence of any (67.6% vs. 40.6%, p = 0.003) and muscle (38.2% vs. 19.2%, p = 0.013) injuries than G-allele carriers. Relatively more post-PHV EMILIN1 rs2289360 CC homozygotes suffered any injury than CT and TT genotypes (56.4% vs. 40.3% and 32.8%, p = 0.007), while the "protective" EMILIN1 TT genotype was more frequent in post- than pre-PHV ASP (22.3 vs. 10.0%, p = 0.008). Regardless of maturity status, T-alleles of ACTN3 rs1815739 and EMILIN1 rs2289360 were associated with greater absence following ankle injury, while the MMP3 rs679620 T-allele and MYLK rs28497577 GT genotype were associated with greater absence following knee injury. The combination of injury-associated genotypes was greater in injured vs. non-injured ASP. This study is the first to demonstrate that a genetic association exists with injury prevalence in ASP, which differs according to maturity status.


Subject(s)
Knee Injuries , Soccer , Actinin/genetics , Alleles , Body Height , Humans , Male , Polymorphism, Single Nucleotide
15.
J Clin Med ; 10(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34768452

ABSTRACT

Obesity may aggravate the effects of sarcopenia on skeletal muscle structure and function in the elderly, but no study has attempted to identify the gene variants associated with sarcopenia in obese women. Therefore, the aims of the present study were to: (1) describe neuromuscular function in sarcopenic and non-sarcopenic women with or without obesity; (2) identify gene variants associated with sarcopenia in older obese women. In 307 Caucasian women (71 ± 6 years, 66.3 ± 11.3 kg), skeletal muscle mass was estimated using bioelectric impedance, and function was tested with a 30 s one-leg standing-balance test. Biceps brachii thickness and vastus lateralis cross-sectional area (VLACSA) were measured with B-mode ultrasonography. Handgrip strength, maximum voluntary contraction elbow flexion (MVCEF), and knee extension torque (MVCKE) were measured by dynamometry, and MVCKE/VLACSA was calculated. Genotyping was performed for 24 single-nucleotide polymorphisms (SNPs), selected based on their previous associations with muscle-related phenotypes. Based on sarcopenia and obesity thresholds, groups were classified as sarcopenic obese, non-sarcopenic obese, sarcopenic non-obese, or non-sarcopenic non-obese. A two-way analysis of covariance was used to assess the main effects of sarcopenia and obesity on muscle-related phenotypes and binary logistic regression was performed for each SNP to investigate associations with sarcopenia in obesity. There were no significant obesity * sarcopenic status interactions for any of the investigated muscle-related phenotypic parameters. Neither sarcopenia nor obesity had a significant effect on biceps brachii thickness, but sarcopenia was associated with lower VLACSA (p = 0.003). Obesity was associated with lower MVCEF (p = 0.032), MVCKE (p = 0.047), and MVCKE/VLACSA (p = 0.012) with no significant effect of sarcopenia. Adjusted for age and height, three SNPs (ACTN3 rs1815739, MTHFR rs1801131, and MTHFR rs1537516) were associated with sarcopenia in obese participants. Sarcopenia was associated with a smaller muscle size, while obesity resulted in a lower muscle quality irrespective of sarcopenia. Three gene variants (ACTN3 rs1815739, MTHFR rs1801131, and MTHFR rs1537516) suspected to affect muscle function, homocysteine metabolism, or DNA methylation, respectively, were associated with sarcopenia in obese elderly women. Understanding the skeletal muscle features affected by sarcopenia and obesity, and identification of genes related to sarcopenia in obese women, may facilitate early detection of individuals at particular risk of sarcopenic obesity.

16.
Nutrients ; 13(9)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34578954

ABSTRACT

Although multiple nutrients have shown protective effects with regard to preserving muscle function, the recommended amount of dietary protein and other nutrients profile on older adults for maintenance of high muscle mass is still debatable. The aims of this paper were to: (1) identify dietary differences between older women with low and high relative skeletal muscle mass, and (2) identify the minimal dietary protein intake associated with high relative skeletal muscle mass and test the threshold ability to determine an association with skeletal muscle phenotypes. Older women (n = 281; 70 ± 7 years, 65 ± 14 kg), with both low and high relative skeletal muscle mass groups, completed a food questionnaire. Skeletal muscle mass, fat-free mass (FFM), biceps brachii thickness, vastus lateralis anatomical cross-sectional area (VLACSA), handgrip strength (HGS), maximum elbow flexion torque (MVCEF), maximum knee extension torque (MVCKE), muscle quality (HGS/Body mass), and fat mass were measured. Older women with low relative skeletal muscle mass had a lower daily intake of protein, iodine, polyunsaturated fatty acid (PUFA), Vit E, manganese, milk, fish, nuts and seeds (p < 0.05) compared to women with high relative skeletal muscle mass. The minimum required dietary protein intake for high relative skeletal muscle mass was 1.17 g/kg body mass/day (g/kg/d) (sensitivity: 0.68; specificity: 0.62). Women consuming ≥1.17 g/kg/d had a lower BMI (B = -3.9, p < 0.001) and fat mass (B = -7.8, p < 0.001), and a higher muscle quality (B = 0.06, p < 0.001). The data indicate that to maintain muscle mass and function, older women should consume ≥1.17 g/kg/d dietary protein, through a varied diet including milk, fish and nuts that also contain polyunsaturated fatty acid (PUFA) and micronutrients such as iodine, Vit E and manganese.


Subject(s)
Dietary Proteins/standards , Micronutrients/metabolism , Muscle, Skeletal/physiology , Nutritional Requirements , Aged , Aged, 80 and over , Diet Surveys , Exercise , Fatty Acids, Unsaturated/administration & dosage , Female , Hand Strength/physiology , Humans , Iodine/administration & dosage , Manganese/administration & dosage , Middle Aged , Muscle Strength/physiology , Muscle, Skeletal/anatomy & histology , Surveys and Questionnaires , Vitamin E/administration & dosage
17.
Int J Sports Physiol Perform ; 16(12): 1858-1864, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34088882

ABSTRACT

PURPOSE: Genetic polymorphisms have been associated with the adaptation to training in maximal oxygen uptake (V˙O2max). However, the genotype distribution of selected polymorphisms in athletic cohorts is unknown, with their influence on performance characteristics also undetermined. This study investigated whether the genotype distributions of 3 polymorphisms previously associated with V˙O2max training adaptation are associated with elite athlete status and performance characteristics in runners and rugby athletes, competitors for whom aerobic metabolism is important. METHODS: Genomic DNA was collected from 732 men including 165 long-distance runners, 212 elite rugby union athletes, and 355 nonathletes. Genotype and allele frequencies of PRDM1 rs10499043 C/T, GRIN3A rs1535628 G/A, and KCNH8 rs4973706 T/C were compared between athletes and nonathletes. Personal-best marathon times in runners, as well as in-game performance variables and playing position, of rugby athletes were analyzed according to genotype. RESULTS: Runners with PRDM1 T alleles recorded marathon times ∼3 minutes faster than CC homozygotes (02:27:55 [00:07:32] h vs 02:31:03 [00:08:24] h, P = .023). Rugby athletes had 1.57 times greater odds of possessing the KCNH8 TT genotype than nonathletes (65.5% vs 54.7%, χ2 = 6.494, P = .013). No other associations were identified. CONCLUSIONS: This study is the first to demonstrate that polymorphisms previously associated with V˙O2max training adaptations in nonathletes are also associated with marathon performance (PRDM1) and elite rugby union status (KCNH8). The genotypes and alleles previously associated with superior endurance-training adaptation appear to be advantageous in long-distance running and achieving elite status in rugby union.


Subject(s)
Athletic Performance , Running , Athletes , Humans , Male , Marathon Running , Oxygen Consumption/genetics , Polymorphism, Genetic , Rugby
18.
Aging Clin Exp Res ; 33(7): 1831-1839, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33715139

ABSTRACT

BACKGROUND: Identification of simple screening tools for detecting lower skeletal muscle mass may be beneficial for planning effective interventions in the elderly. AIMS: We aimed to (1) establish a threshold for one-leg standing balance test (OLST) time for low muscle mass, and (2) test the ability of that threshold to assess muscular impairments in a poor balance group. METHODS: Eyes-open OLST (maximum duration 30 s) was performed with right and left legs in 291 women (age 71 ± 6 years). OLST time was calculated as the sum of the OLST time of right and left legs. Fat-free mass (FFM), skeletal muscle mass (SMM), fat mass, biceps brachii and vastus lateralis sizes; handgrip strength (HGS), elbow flexion maximum torque (MVCEF) and knee extension maximum torque (MVCKE) were measured. Muscle quality was calculated as MVCKE/FFM and physical activity was assessed by questionnaire. Low muscle mass was defined as SMMrelative of 22.1%, a previously established threshold for pre-sarcopenia. RESULTS: The OLST threshold time to detect low muscle mass was 55 s (sensitivity: 0.63; specificity: 0.60). The poor balance group (OLST < 55 s) had higher fat mass (3.0%, p < 0.001), larger VL thickness (5.1%, p = 0.016), and lower HGS (- 10.2%, p < 0.001), MVCEF (- 8.2%, p = 0.003), MVCKE (- 9.5%, p = 0.012), MVCKE/FFM (- 11.0%, p = 0.004) and physical activity (- 8.0%, p = 0.024) compared to the normal balance group. While after adjusting age, the differences exist for HGS, fat mass and VL thickness only. DISCUSSION: An OLST threshold of 55 s calculated as the summed score from both legs discriminated pre-sarcopenic characteristics among active, community-dwelling older women with limited potential (sensitivity 0.63, specificity 0.60). CONCLUSION: OLST, which can be performed easily in community settings without the need for more complex muscle mass measurement, may help identify women at risk of developing sarcopenia.


Subject(s)
Leg , Sarcopenia , Aged , Female , Hand Strength , Humans , Independent Living , Muscle Strength , Muscle, Skeletal
19.
Sports (Basel) ; 9(2)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499151

ABSTRACT

Elite rugby league and union have some of the highest reported rates of concussion (mild traumatic brain injury) in professional sport due in part to their full-contact high-velocity collision-based nature. Currently, concussions are the most commonly reported match injury during the tackle for both the ball carrier and the tackler (8-28 concussions per 1000 player match hours) and reports exist of reduced cognitive function and long-term health consequences that can end a playing career and produce continued ill health. Concussion is a complex phenotype, influenced by environmental factors and an individual's genetic predisposition. This article reviews concussion incidence within elite rugby and addresses the biomechanics and pathophysiology of concussion and how genetic predisposition may influence incidence, severity and outcome. Associations have been reported between a variety of genetic variants and traumatic brain injury. However, little effort has been devoted to the study of genetic associations with concussion within elite rugby players. Due to a growing understanding of the molecular characteristics underpinning the pathophysiology of concussion, investigating genetic variation within elite rugby is a viable and worthy proposition. Therefore, we propose from this review that several genetic variants within or near candidate genes of interest, namely APOE, MAPT, IL6R, COMT, SLC6A4, 5-HTTLPR, DRD2, DRD4, ANKK1, BDNF and GRIN2A, warrant further study within elite rugby and other sports involving high-velocity collisions.

20.
J Sports Med Phys Fitness ; 61(11): 1490-1498, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33480513

ABSTRACT

BACKGROUND: The aim of the study was to establish the bone and body composition characteristics of high-level athletes with and without a history of stress fracture injury. METHODS: Overall, 279 high-level athletes (212 men, 67 women) (age 28.0±9.2 years; body mass 75.0±17.4 kg; height 1.78±0.10 m) and 112 non-athletic controls (60 women, 52 men) 36.2±15.0 years; 70.9±12.9 kg; 1.71±0.10 m) were assessed by DXA to establish their bone mineral density and content, body fat and lean mass. Athletes completed a questionnaire detailing their stress fracture history. RESULTS: There were no differences in whole-body bone mineral density (men 1.41±0.12 g/cm2, women 1.19±0.09 g/cm2), bone mineral content (men 3709±626 g, women 2263±290 g), body fat (men 16.3±5.0%,women 23.0±4.6%) and lean mass (men 65.4±9.9 kg, women 38.7±3.6 kg) between athletes with a history of stress fracture (34 men, 16 women) and those without (176 men, 40 women). CONCLUSIONS: DXA derived bone and body composition characteristics were not independent risk factors for stress fracture injury in high-level athletes. This study in a large cohort of high-level athletes provides normative bone and body composition values that can be used as a benchmark for researchers and applied practitioners.


Subject(s)
Fractures, Stress , Absorptiometry, Photon , Adolescent , Adult , Athletes , Body Composition , Bone Density , Female , Fractures, Stress/diagnostic imaging , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...