Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(7): eade7731, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36800420

ABSTRACT

Topologically protected magnon surface states are highly desirable as an ideal platform to engineer low-dissipation spintronics devices. However, theoretical prediction of topological magnons in strongly correlated materials proves to be challenging because the ab initio density functional theory calculations fail to reliably predict magnetic interactions in correlated materials. Here, we present a symmetry-based approach, which predicts topological magnons in magnetically ordered crystals, upon applying external perturbations such as magnetic/electric fields and/or mechanical strains. We apply this approach to carry out an efficient search for magnetic materials in the Bilbao Crystallographic Server, where, among 198 compounds with an over 300-K transition temperature, we identify 12 magnetic insulators that support room-temperature topological magnons. They feature Weyl magnons with surface magnon arcs and magnon axion insulators with either chiral surface or hinge magnon modes, offering a route to realize energy-efficient devices based on protected surface magnons.

2.
ACS Nano ; 16(3): 3852-3860, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35176210

ABSTRACT

The development of thermally robust, air-stable, exfoliatable two-dimensional van der Waals ferromagnetic materials with high transition temperatures is of great importance. Here, we establish a family of magnetic alloys, CrxPt1-xTe2 (x ≤ 0.45), that combines the stability of the late transition metal dichalcogenide PtTe2 with magnetism from Cr. These materials are easily grown in crystal form from the melt, are stable in ambient conditions, and have among the highest concentrations of magnetic element substitution in transition metal dichalcogenide alloys. The highest Cr-substituted material, Cr0.45Pt0.55Te2, exhibits ferromagnetic behavior below 220 K, and the easy axis is along the c-axis of the material, as determined using a combination of neutron diffraction and magnetic susceptibility measurements. These materials are metallic, with appreciable magnetoresistance below the Curie temperature. Single-crystal and powder diffraction measurements indicate Cr readily alloys onto the Pt site and does not sit in the van der Waals space, allowing these materials to be readily exfoliated to the few-layer regime. In summary, this air-stable, exfoliatable, high transition temperature ferromagnet shows great potential as building block for future 2D devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...