Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(16): e2211438, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36840467

ABSTRACT

It is challenging to find a conventional nanofabrication technique that can consistently produce soft polymeric matter of high surface area and nanoscale morphology in a way that is scalable, versatile, and easily tunable. Here, the capabilities of a universal method for fabricating diverse nano- and micro-scale morphologies based on polymer precipitation templated by the fluid streamlines in multiphasic flow are explored. It is shown that while the procedure is operationally simple, various combinations of its intertwined mechanisms can controllably and reproducibly lead to the formation of an extraordinary wide range of colloidal morphologies. By systematically investigating the process conditions, 12 distinct classes of polymer micro- and nano-structures including particles, rods, ribbons, nanosheets, and soft dendritic colloids (dendricolloids) are identified. The outcomes are interpreted by delineating the physical processes into three stages: hydrodynamic shear, capillary and mechanical breakup, and polymer precipitation rate. The insights into the underlying fundamental mechanisms provide guidance toward developing a versatile and scalable nanofabrication platform. It is verified that the liquid shear-based technique is versatile and works well with many chemically diverse polymers and biopolymers, showing potential as a universal tool for simple and scalable nanofabrication of many morphologically distinct soft matter classes.

2.
Macromol Rapid Commun ; 43(23): e2200513, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35988012

ABSTRACT

The deposition of coatings with hierarchical morphology from hydrophobic and hydrophilic polymers is a common approach for making superhydrophobic and superhydrophilic coatings. The water-repellent, water-wicking, and anti-icing coatings reported here are made from a class of materials called soft dendritic colloids (SDCs). The branched, nanofibrous SDCs are produced in suspension through nonsolvent-induced phase separation in a turbulent medium. The properties of coatings formed by drying ethanol suspensions of SDCs made of polystyrene, polyvinyl alcohol, and polyester are compared. The highly branched SDC morphology creates entangled, porous coating layers with strong physical adhesion to the substrate due to the multitude of nanofiber sub-contacts analogous to the "gecko leg effect". Polystyrene SDC coatings show excellent superhydrophobicity but weaker adhesion due to low surface energy. Alternatively, polyvinyl alcohol SDC coatings show superhydrophilicity and strong adhesion from their high surface energy. Two strategies to improve the adhesivity and cohesivity of the SDCs layers are shown effective - use of intertwined networks and of silicone droplet microbinders. The water repulsion, together with the air trapped in the blended superhydrophobic coatings also makes them effective against ice nucleation and adhesion. Finally, these SDCs make thin, flexible, and durable nonwovens with similar properties.

3.
ACS Appl Mater Interfaces ; 13(43): 50643-50656, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34668373

ABSTRACT

In this study, highly porous, ultrasoft polymeric mats mimicking human tissues were formed from novel polyurethane soft dendritic colloids (PU SDCs). PU SDCs have a unique fibrillar morphology controlled by antisolvent precipitation. When filtered from suspension, PU SDCs form mechanically robust nonwoven mats. The stiffness of the SDC mats can be tuned for physiological relevance. The unique physiochemical characteristics of the PU SDC particles dictate the mechanical properties resulting in tunable elastic moduli ranging from 200 to 800 kPa. The human lung A549 cells cultured on both stiff and soft PU SDC membranes were found to be viable, capable of supporting the air-liquid interface (ALI) cell culture, and maintained barrier integrity. Furthermore, A549 cellular viability and uptake efficiency of aerosolized tannic acid-coated gold nanoparticles (Ta-Au) was found to depend on elastic modulus and culture conditions. Ta-Au nanoparticle uptake was twofold and fourfold greater on soft PU SDCs, when cultured at submerged and ALI conditions, respectively. The significant increase in endocytosed Ta-Au resulted in a 20% decrease in viability, and a 4-fold increase in IL-8 cytokine secretion when cultured on soft PU SDCs at ALI. Common tissue culture materials exhibit super-physiological elastic moduli, a factor found to be critical in analyzing nanomaterial cellular interactions and biological responses.


Subject(s)
Epithelial Cells/metabolism , Nanoparticles/metabolism , Polyurethanes/metabolism , A549 Cells , Aerosols/chemistry , Aerosols/metabolism , Epithelial Cells/chemistry , Humans , Interleukin-8/metabolism , Nanoparticles/chemistry , Particle Size , Polyurethanes/chemistry , Surface Properties
4.
Nat Commun ; 12(1): 2834, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990593

ABSTRACT

The design of hydrogels where multiple interpenetrating networks enable enhanced mechanical properties can broaden their field of application in biomedical materials, 3D printing, and soft robotics. We report a class of self-reinforced homocomposite hydrogels (HHGs) comprised of interpenetrating networks of multiscale hierarchy. A molecular alginate gel is reinforced by a colloidal network of hierarchically branched alginate soft dendritic colloids (SDCs). The reinforcement of the molecular gel with the nanofibrillar SDC network of the same biopolymer results in a remarkable increase of the HHG's mechanical properties. The viscoelastic HHGs show >3× larger storage modulus and >4× larger Young's modulus than either constitutive network at the same concentration. Such synergistically enforced colloidal-molecular HHGs open up numerous opportunities for formulation of biocompatible gels with robust structure-property relationships. Balance of the ratio of their precursors facilitates precise control of the yield stress and rate of self-reinforcement, enabling efficient extrusion 3D printing of HHGs.

5.
Nat Mater ; 18(12): 1315-1320, 2019 12.
Article in English | MEDLINE | ID: mdl-31611673

ABSTRACT

The interplay between morphology, excluded volume and adhesivity of particles critically determines the physical properties of numerous soft materials and coatings1-6. Branched particles2 or nanofibres3, nanofibrillated cellulose4 or fumed silica5 can enhance the structure-building abilities of colloids, whose adhesion may also be increased by capillarity or binding agents6. Nonetheless, alternative mechanisms of strong adhesion found in nature involve fibrillar mats with numerous subcontacts (contact splitting)7-11 as seen in the feet of gecko lizards and spider webs12-17. Here, we describe the fabrication of hierarchically structured polymeric microparticles having branched nanofibre coronas with a dendritic morphology. Polymer precipitation in highly turbulent flow results in microparticles with fractal branching and nanofibrillar contact splitting that exhibit gelation at very low volume fractions, strong interparticle adhesion and binding into coatings and non-woven sheets. These soft dendritic particles also have potential advantages for food, personal care or pharmaceutical product formulations.


Subject(s)
Dendrimers/chemistry , Mechanical Phenomena , Microspheres , Adhesiveness , Molecular Weight , Polystyrenes/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...