Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Dis Aquat Organ ; 143: 119-127, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33570045

ABSTRACT

Sea lice are amongst the most ecologically and economically damaging parasites of farmed salmonids globally. Spill-over from aquaculture can increase parasite pressure on wild fish populations, but quantifying this effect is challenging due to the relative paucity of data available on 'natural' salmonid louse burdens in the absence of aquaculture, particularly for Atlantic salmon Salmo salar. Here, wild Atlantic salmon and sea trout S. trutta were screened at the tidal limit of the River Tamar (UK) for the presence of sea lice. During 2013 and 2015, the prevalence of sea lice ranged from 41 (n = 361) to 60% (n = 275) and 55 (n = 882) to 58% (n = 800) in Atlantic salmon and sea trout, respectively. All sea lice collected were identified as Lepeophtheirus salmonis. Mean L. salmonis infection intensity across the study period was 5.84 (range: 1-66) in Atlantic salmon and 6.45 (range: 1-37) in sea trout. Infection intensity was positively correlated with the amount of external damage present for both fish species. Given that the fish were examined when returning to freshwater, the lice burdens obtained may represent an underestimate. Nevertheless, these data provide important baseline information on 'natural' sea louse infections in South West England, which has been proposed as a potential region for aquaculture development.


Subject(s)
Copepoda , Fish Diseases , Salmo salar , Animals , England , Fish Diseases/epidemiology , Rivers , Trout , United Kingdom
2.
Parasit Vectors ; 7: 576, 2014 Dec 20.
Article in English | MEDLINE | ID: mdl-25526740

ABSTRACT

BACKGROUND: Gyrodactylus salaris Malmberg, 1957 has had a devastating impact on wild Norwegian stocks of Atlantic salmon Salmo salar L., and it is the only Office International des Epizooties (OIE) listed parasitic pathogen of fish. The UK is presently recognised as G. salaris-free, and management plans for its containment and control are currently based on Scandinavian studies. The current study investigates the susceptibility of British salmonids to G. salaris, and determines whether, given the host isolation since the last glaciation and potential genetic differences, the populations under test would exhibit different levels of susceptibility, as illustrated by the parasite infection trajectory over time, from their Scandinavian counterparts. METHODS: Populations of S. salar, brown trout Salmo trutta L., and grayling Thymallus thymallus (L.), raised from wild stock in UK government hatcheries, were flown to Norway and experimentally challenged with a known pathogenic strain of G. salaris. Each fish was lightly anaesthetised and marked with a unique tattoo for individual parasite counting. A single Norwegian population of S. salar from the River Lærdalselva was used as a control. Parasite numbers were assessed every seven days until day 48 and then every 14 days. RESULTS: Gyrodactylus salaris regularly leads to high mortalities on infected juveniles S. salar. The number of G. salaris on British S. salar rose exponentially until the experiment was terminated at 33 days due to fish welfare concerns. The numbers of parasites on S. trutta and T. thymallus increased sharply, reaching a peak of infection on days 12 and 19 post-infection respectively, before declining to a constant low level of infection until the termination of the experiment at 110 days. CONCLUSIONS: The ability of S. trutta and T. thymallus to carry an infection for long periods increases the window of exposure for these two hosts and the potential transfer of G. salaris to other susceptible hosts. This study demonstrates that G. salaris can persist on S. trutta for longer periods than previously thought, and that the role that S. trutta could play in disseminating G. salaris needs to be considered carefully and factored into management plans and epidemics across Europe.


Subject(s)
Cestode Infections/veterinary , Fish Diseases/parasitology , Platyhelminths/physiology , Salmo salar/parasitology , Animals , Cestode Infections/parasitology , Cestode Infections/pathology , Disease Susceptibility , Europe , Fish Diseases/pathology , United Kingdom
3.
PLoS One ; 6(10): e26365, 2011.
Article in English | MEDLINE | ID: mdl-22022606

ABSTRACT

The infection consequences of the introduced cestode fish parasite Bothriocephalus acheilognathi were studied in a cohort of wild, young-of-the-year common carp Cyprinus carpio that lacked co-evolution with the parasite. Within the cohort, parasite prevalence was 42% and parasite burdens were up to 12% body weight. Pathological changes within the intestinal tract of parasitized carp included distension of the gut wall, epithelial compression and degeneration, pressure necrosis and varied inflammatory changes. These were most pronounced in regions containing the largest proportion of mature proglottids. Although the body lengths of parasitized and non-parasitized fish were not significantly different, parasitized fish were of lower body condition and reduced weight compared to non-parasitized conspecifics. Stable isotope analysis (δ(15)N and δ(13)C) revealed trophic impacts associated with infection, particularly for δ(15)N where values for parasitized fish were significantly reduced as their parasite burden increased. In a controlled aquarium environment where the fish were fed ad libitum on an identical food source, there was no significant difference in values of δ(15)N and δ(13)C between parasitized and non-parasitized fish. The growth consequences remained, however, with parasitized fish growing significantly slower than non-parasitized fish, with their feeding rate (items s(-1)) also significantly lower. Thus, infection by an introduced parasite had multiple pathological, ecological and trophic impacts on a host with no experience of the parasite.


Subject(s)
Cestoda/physiology , Ecosystem , Fish Diseases/pathology , Fish Diseases/parasitology , Host-Parasite Interactions , Introduced Species , Parasites/physiology , Animals , Body Weight , Carps/growth & development , Carps/parasitology , Cestode Infections/parasitology , Cestode Infections/pathology , Cestode Infections/veterinary , Feeding Behavior , Intestines/parasitology , Intestines/pathology , Isotope Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...