Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Cell ; 31(10): 992-1014, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32129710

ABSTRACT

Wnt signaling plays key roles in embryonic development and adult stem cell homeostasis and is altered in human cancer. Signaling is turned on and off by regulating stability of the effector ß-catenin (ß-cat). The multiprotein destruction complex binds and phosphorylates ß-cat and transfers it to the SCF-TrCP E3-ubiquitin ligase for ubiquitination and destruction. Wnt signals act though Dishevelled to turn down the destruction complex, stabilizing ß-cat. Recent work clarified underlying mechanisms, but important questions remain. We explore ß-cat transfer from the destruction complex to the E3 ligase, and test models suggesting Dishevelled and APC2 compete for association with Axin. We find that Slimb/TrCP is a dynamic component of the destruction complex biomolecular condensate, while other E3 proteins are not. Recruitment requires Axin and not APC, and Axin's RGS domain plays an important role. We find that elevating Dishevelled levels in Drosophila embryos has paradoxical effects, promoting the ability of limiting levels of Axin to turn off Wnt signaling. When we elevate Dishevelled levels, it forms its own cytoplasmic puncta, but these do not recruit Axin. Superresolution imaging in mammalian cells raises the possibility that this may result by promoting Dishevelled:Dishevelled interactions at the expense of Dishevelled: Axin interactions when Dishevelled levels are high.


Subject(s)
Axin Protein/metabolism , Cell Cycle Proteins/metabolism , Dishevelled Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Ubiquitin-Protein Ligases/metabolism , Wnt Signaling Pathway , Animals , Axin Protein/chemistry , Drosophila Proteins/chemistry , Female , Humans , Male , Protein Binding , Protein Domains
2.
PLoS Genet ; 14(4): e1007339, 2018 04.
Article in English | MEDLINE | ID: mdl-29641560

ABSTRACT

Wnt signaling provides a paradigm for cell-cell signals that regulate embryonic development and stem cell homeostasis and are inappropriately activated in cancers. The tumor suppressors APC and Axin form the core of the multiprotein destruction complex, which targets the Wnt-effector beta-catenin for phosphorylation, ubiquitination and destruction. Based on earlier work, we hypothesize that the destruction complex is a supramolecular entity that self-assembles by Axin and APC polymerization, and that regulating assembly and stability of the destruction complex underlie its function. We tested this hypothesis in Drosophila embryos, a premier model of Wnt signaling. Combining biochemistry, genetic tools to manipulate Axin and APC2 levels, advanced imaging and molecule counting, we defined destruction complex assembly, stoichiometry, and localization in vivo, and its downregulation in response to Wnt signaling. Our findings challenge and revise current models of destruction complex function. Endogenous Axin and APC2 proteins and their antagonist Dishevelled accumulate at roughly similar levels, suggesting competition for binding may be critical. By expressing Axin:GFP at near endogenous levels we found that in the absence of Wnt signals, Axin and APC2 co-assemble into large cytoplasmic complexes containing tens to hundreds of Axin proteins. Wnt signals trigger recruitment of these to the membrane, while cytoplasmic Axin levels increase, suggesting altered assembly/disassembly. Glycogen synthase kinase3 regulates destruction complex recruitment to the membrane and release of Armadillo/beta-catenin from the destruction complex. Manipulating Axin or APC2 levels had no effect on destruction complex activity when Wnt signals were absent, but, surprisingly, had opposite effects on the destruction complex when Wnt signals were present. Elevating Axin made the complex more resistant to inactivation, while elevating APC2 levels enhanced inactivation. Our data suggest both absolute levels and the ratio of these two core components affect destruction complex function, supporting models in which competition among Axin partners determines destruction complex activity.


Subject(s)
Armadillo Domain Proteins/metabolism , Axin Signaling Complex/metabolism , Drosophila Proteins/metabolism , Transcription Factors/metabolism , Wnt Signaling Pathway , Animals , Animals, Genetically Modified , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/chemistry , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Armadillo Domain Proteins/chemistry , Armadillo Domain Proteins/genetics , Axin Protein/chemistry , Axin Protein/genetics , Axin Protein/metabolism , Axin Signaling Complex/chemistry , Axin Signaling Complex/genetics , Cell Line , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Proteolysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription, Genetic , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Wnt1 Protein/genetics , Wnt1 Protein/metabolism
3.
Development ; 143(5): 831-40, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26811386

ABSTRACT

The development of the vertebrate embryonic heart occurs by hyperplastic growth as well as the incorporation of cells from tissues outside of the initial heart field. Amongst these tissues is the epicardium, a cell structure that develops from the precursor proepicardial organ on the right side of the septum transversum caudal to the developing heart. During embryogenesis, cells of the proepicardial organ migrate, adhere and envelop the maturing heart, forming the epicardium. The cells of the epicardium then delaminate and incorporate into the heart giving rise to cardiac derivatives, including smooth muscle cells and cardiac fibroblasts. Here, we demonstrate that the LIM homeodomain protein Lhx9 is transiently expressed in Xenopus proepicardial cells and is essential for the position of the proepicardial organ on the septum transversum. Utilizing a small-molecule screen, we found that Lhx9 acts upstream of integrin-paxillin signaling and consistently demonstrate that either loss of Lhx9 or disruption of the integrin-paxillin pathway results in mis-positioning of the proepicardial organ and aberrant deposition of extracellular matrix proteins. This leads to a failure of proepicardial cell migration and adhesion to the heart, and eventual death of the embryo. Collectively, these studies establish a requirement for the Lhx9-integrin-paxillin pathway in proepicardial organ positioning and epicardial formation.


Subject(s)
Gene Expression Regulation, Developmental , Heart/embryology , Integrin alpha4/metabolism , LIM-Homeodomain Proteins/physiology , Pericardium/physiology , Transcription Factors/metabolism , Transcription Factors/physiology , Xenopus Proteins/metabolism , Xenopus Proteins/physiology , Animals , Animals, Genetically Modified , Cell Movement/physiology , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Immunohistochemistry , In Situ Hybridization , Integrins/metabolism , Mesoderm/metabolism , Paxillin/metabolism , Pericardium/embryology , Protein Structure, Tertiary , Xenopus laevis/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...