Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 28(47): e202201311, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35675114

ABSTRACT

Bedaquiline is a crucial medicine in the global fight against tuberculosis, yet its high price places it out of reach for many patients. Herein, we describe improvements to the key industrial lithiation-addition sequence that enable a higher yielding and therefore more economical synthesis of bedaquiline. Prioritization of mechanistic understanding and multi-lab reproducibility led to optimized reaction conditions that feature an unusual base-salt pairing and afford a doubling of the yield of racemic bedaquiline. We anticipate that implementation of these improvements on manufacturing scale will be facile, thereby substantially increasing the accessibility of this essential medication.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents , Diarylquinolines/therapeutic use , Humans , Reproducibility of Results , Tuberculosis/drug therapy
2.
Org Process Res Dev ; 25(12): 2679-2685, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34955627

ABSTRACT

A scalable four-step synthesis of molnupiravir from cytidine is described herein. The attractiveness of this approach is its fully chemical nature involving inexpensive reagents and more environmentally friendly solvents such as water, isopropanol, acetonitrile, and acetone. Isolation and purification procedures are improved in comparison to our earlier study as all intermediates can be isolated via recrystallization. The key steps in the synthesis, namely, ester formation, hydroxyamination, and deprotection were carried out on a multigram scale to afford molnupiravir in 36-41% yield with an average purity of 98 wt % by qNMR and 99 area% by HPLC.

3.
Anal Chem ; 90(8): 4999-5006, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29343056

ABSTRACT

We report a phosphorescent chemosensor based on a trinuclear Au(I) pyrazolate complex or [Au(3-CH3,5-COOH)Pz]3 (aka Au3Pz3) stabilized in aqueous chitosan (CS) polymer media. Au3Pz3 is synthesized in situ within aqueous CS media at pH ∼ 6.5 and room temperature (RT). Au3Pz3 exhibits strong red emission (λmax ∼ 690 nm) in such solutions. On addition of silver salt to Au3Pz3/CS aqueous media, a bright-green emissive adduct (Au3Pz3/Ag+) with a peak maximum within 475-515 nm is developed. The silver adduct exhibits a 4-fold increase in quantum yield (0.19 ± 0.02) compared to Au3Pz3 alone (0.05 ± 0.01), along with a corresponding increase in phosphorescence lifetime. With almost zero interference from 15 other metal ions tested, Au3Pz3 exhibits extreme selectivity for Ag+ with nM/ppb detection limits (6.4-72 ppb, depending on %CS and on the sensitivity basis being a signal-to-noise ratio (S/N) = 3 or a baseline-corrected signal change = 10%). Au3Pz3 exhibits sensitivity to higher concentrations (>1 mM) of other metal ions (Tl+/Pb2+/Gd3+). The sensing methodology is simple, fast, convenient, and can even be detected by the naked eye. On addition of ethylenediaminetetraacetic acid (EDTA), the red Au3Pz3 emission can be restored. Au3Pz3 and its silver adduct retain their characteristic photophysical properties in thin film forms. Remarkable photostability with <7% photobleaching after 4 h of UV irradiation is attained for Au3Pz3 solutions or thin films.

SELECTION OF CITATIONS
SEARCH DETAIL
...