Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Periodontol ; 93(3): 403-411, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34114665

ABSTRACT

BACKGROUND: Ridge preservation is performed by placing a biocompatible product, following tooth extraction, to maintain bone volume. However, current ridge preservation therapies do not always maintain the volume required for future implant placement. Variations in surgical technique and material selection contribute to determining clinical outcomes. The wide variety of grafting materials available and conflicting efficacy reports make selecting the appropriate graft materials challenging. To investigate how different commercially available ridge preservation products might perform clinically: Helistat (collagen control) (Material 1), OsteoGen Plug (Material 2), Bio-Oss Collagen (Material 3), and J-Bone (native bone) (Material 4) were evaluated. METHODS: These products underwent field emission scanning electron microscopy, microcomputed tomography, helium pycnometry, and infrared spectra analysis. Human osteosarcomas were incubated on products and proliferation was monitored with CCK-8 and visualized with confocal microscopy. Scaffold osteoconductivity was evaluated through the cellular production of proteins osteocalcin, osteonectin, and osteopontin. RESULTS: Results indicated that products varied in porosity and pore interconnectivity. Although Material 3 was chemically similar to Material 4, Material 2 demonstrated significantly better biocompatibility. Functionally, Material 1 and Material 2 elicited higher osteonectin release than Material 3 and Material 4 which suggests the latter products suppress endogenous osteonectin secretion. Furthermore, osteopontin secretion was minimal for all products, while osteocalcin was elevated. This seems to suggest that high levels of mineralization might be deleterious for bone regeneration. CONCLUSIONS: Although all products are marketed as effective preservation products, the results demonstrated high variability in physical, chemical, and biological effects; however, this study suggests a product with higher ratio of collagen to mineral component may have the most desirable effects for the use in alveolar ridge preservation.


Subject(s)
Alveolar Bone Loss , Alveolar Ridge Augmentation , Alveolar Bone Loss/surgery , Alveolar Process/surgery , Alveolar Ridge Augmentation/methods , Collagen , Durapatite , Humans , Osteocalcin , Osteonectin , Osteopontin , Tooth Extraction , Tooth Socket/surgery , X-Ray Microtomography
2.
Polymers (Basel) ; 13(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34578075

ABSTRACT

Thermal injuries pose a risk for service members in prolonged field care (PFC) situations or to civilians in levels of lower care. Without access to prompt surgical intervention and treatment, potentially salvageable tissues are compromised, resulting in increases in both wound size and depth. Immediate debridement of necrotic tissue enhances survivability and mitigates the risks of burn shock, multiple organ failure, and infection. However, due to the difficulty of surgical removal of the burn eschar in PFC situations and lower levels of care, it is of utmost importance to develop alternative methods for burn stabilization. Studies have indicated that cerium(III) nitrate may be used to prolong the time before surgical intervention is required. The objective of this study was to incorporate cerium(III) nitrate into an electrospun dressing that could provide burst release. Select dosages of cerium(III) nitrate were dissolved with either pure solvent or polyethylene oxide (PEO) for coaxial or traditional electrospinning set-ups, respectively. The solutions were coaxially electrospun onto a rotating mandrel, resulting in a combined nonwoven mesh, and then compared to traditionally spun solutions. Dressings were evaluated for topography, morphology, and porosity using scanning electron microscopy and helium pycnometry. Additionally, cerium(III) loading efficiency, release rates, and cytocompatibility were evaluated in both static and dynamic environments. Imaging showed randomly aligned polymer nanofibers with fiber diameters of 1161 ± 210 nm and 1090 ± 250 nm for traditionally and coaxially spun PEO/cerium(III) nitrate dressings, respectively. Assay results indicated that the electrospun dressings contained cerium(III) nitrate properties, with the coaxially spun dressings containing 33% more cerium(III) nitrate than their traditionally spun counterparts. Finally, release studies revealed that PEO-based dressings released the entirety of their contents within the first hour with no detrimental cytocompatibility effects for coaxially-spun dressings. The study herein shows the successful incorporation of cerium(III) nitrate into an electrospun dressing.

3.
Int J Numer Method Biomed Eng ; 34(11): e3132, 2018 11.
Article in English | MEDLINE | ID: mdl-30047248

ABSTRACT

INTRODUCTION: Flow-induced shear stresses have been found to be a stimulatory factor in pre-osteoblastic cells seeded in 3D porous scaffolds and cultured under continuous flow perfusion. However, due to the complex internal structure of the scaffolds, whole scaffold calculations of the local shear forces are computationally intensive. Instead, representative volume elements (RVEs), which are obtained by extracting smaller portions of the scaffold, are commonly used in literature without a numerical accuracy standard. OBJECTIVE: Hence, the goal of this study is to examine how closely the whole scaffold simulations are approximated by the two types of boundary conditions used to enable the RVEs: "wall boundary condition" (WBC) and "periodic boundary condition" (PBC). METHOD: To that end, lattice Boltzmann method fluid dynamics simulations were used to model the surface shear stresses in 3D scaffold reconstructions, obtained from high-resolution microcomputed tomography images. RESULTS: It was found that despite the RVEs being sufficiently larger than 6 times the scaffold pore size (which is the only accuracy guideline found in literature), the stresses were still significantly under-predicted by both types of boundary conditions: between 20% and 80% average error, depending on the scaffold's porosity. Moreover, it was found that the error grew with higher porosity. This is likely due to the small pores dominating the flow field, and thereby negating the effects of the unrealistic boundary conditions, when the scaffold porosity is small. Finally, it was found that the PBC was always more accurate and computationally efficient than the WBC. Therefore, it is the recommended type of RVE.


Subject(s)
Stress, Mechanical , Tissue Engineering/methods , Tissue Scaffolds , Humans
4.
ACS Biomater Sci Eng ; 4(2): 347-356, 2018 Feb 12.
Article in English | MEDLINE | ID: mdl-33418729

ABSTRACT

In this work, we combined three-dimensional (3D) scaffolds with flow perfusion bioreactors to evaluate the gradient effects of scaffold architecture and mechanical stimulation, respectively, on tumor cell phenotype. As cancer biologists elucidate the relevance of 3D in vitro tumor models within the drug discovery pipeline, it has become more compelling to model the tumor microenvironment and its impact on tumor cells. In particular, permeability gradients within solid tumors are inherently complex and difficult to accurately model in vitro. However, 3D printing can be used to design scaffolds with complex architecture, and flow perfusion can simulate mechanical stimulation within the tumor microenvironment. By modeling these gradients in vitro with 3D printed scaffolds and flow perfusion, we can identify potential diffusional limitations of drug delivery within a tumor. Ewing sarcoma (ES), a pediatric bone tumor, is a suitable candidate to study heterogeneous tumor response due to its demonstrated shear stress-dependent secretion of ligands important for ES tumor progression. We cultured ES cells under flow perfusion conditions on poly(propylene fumarate) scaffolds, which were fabricated with a distinct pore size gradient via extrusion-based 3D printing. Computational fluid modeling confirmed the presence of a shear stress gradient within the scaffolds and estimated the average shear stress that ES cells experience within each layer. Subsequently, we observed enhanced cell proliferation under flow perfusion within layers supporting lower permeability and increased surface area. Additionally, the effects of shear stress gradients on ES cell signaling transduction of the insulin-like growth factor-1 pathway elicited a response dependent upon the scaffold gradient orientation and the presence of flow-derived shear stress. Our results highlight how 3D printed scaffolds, in combination with flow perfusion in vitro, can effectively model aspects of solid tumor heterogeneity for future drug testing and customized patient therapies.

5.
Biosens Bioelectron ; 90: 443-449, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-27825527

ABSTRACT

As the field of tissue engineering progresses ever-further toward realizing clinical implementation of tissue-engineered constructs for wound regeneration, perhaps the most significant hurdle remains the establishment of non-destructive means for real-time in vitro assessment. In order to address this barrier, the study presented herein established the viability of the development of correlations between metabolic rates (specifically oxygen uptake, glucose consumption, and lactate production) and the cellularity of tissue-engineered cultures comprised of rat mesenchymal stem cells dynamically seeded on 85% porous nonwoven spunbonded poly(l-lactic acid) fiber mesh scaffolds. Said scaffolds were cultured for up to 21 days in a flow perfusion bioreactor system wherein α-MEM (supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic) was perfused directly through each scaffold at low flow rates (~0.15mL/min). Metabolite measurements were obtained intermittently through the use of a fiber-optic probe (for the case of oxygen) and biochemical assays (for glucose and lactate). Such measurements were subsequently correlated with cellularity data obtained utilizing current-standard destructive means. The resulting correlations, all exhibiting high R2 values, serve as a proof-on-concept for the use of metabolic data for the determination of scaffold cellularity in real-time non-destructively. This study can be easily adapted for use with various cell types, media formulations, and potentially different bioreactor systems. Implementation of more advanced in situ measurement devices could be easily accommodated to allow for true real-time, on-line metabolite monitoring and cellularity estimation.


Subject(s)
Biosensing Techniques , Glucose/isolation & purification , Lactic Acid/isolation & purification , Metabolome , Oxygen/isolation & purification , Animals , Bioreactors , Cattle , Glucose/metabolism , Lactic Acid/metabolism , Mesenchymal Stem Cells/metabolism , Oxygen/metabolism , Rats , Regeneration , Tissue Engineering/methods , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...