Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(18): 24923-24937, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31510373

ABSTRACT

Due to the chromatic dispersion properties inherent in all optical materials, even the best-designed multispectral objective will exhibit residual chromatic aberration. Here, we demonstrate a multispectral microscope with a computational scheme based on the Fourier ptychographic microscopy (FPM) to correct these effects in order to render undistorted, in-focus images. The microscope consists of 4 spectral channels ranging from 405 nm to 1552 nm. After the computational aberration correction, it can achieve isotropic resolution enhancement as verified with the Siemens star sample. We image a flip-chip to show the promise of our system to conduct fault detection on silicon chips. This computational approach provides a cost-efficient strategy for high quality multispectral imaging over a broad spectral range.

SELECTION OF CITATIONS
SEARCH DETAIL
...