Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
PeerJ ; 11: e16580, 2023.
Article in English | MEDLINE | ID: mdl-38084143

ABSTRACT

Background: Operation of wind turbines has resulted in collision fatalities for several bat species, and one proven method to reduce these fatalities is to limit wind turbine blade rotation (i.e., curtail turbines) when fatalities are expected to be highest. Implementation of curtailment can potentially be optimized by targeting times when females are most at risk, as the proportion of females limits the growth and stability of many bat populations. The Brazilian free-tailed bat (Tadarida brasiliensis) is the most common bat fatality at wind energy facilities in California and Texas, and yet there are few available data on the sex ratios of the carcasses that are found. Understanding the sex ratios of fatalities in California and Texas could aid in planning population conservation strategies such as informed curtailment. Methods: We used PCR to determine the sex of bat carcasses collected from wind energy facilities during post-construction monitoring (PCM) studies in California and Texas. In California, we received samples from two locations within the Altamont Pass Wind Resource Area in Alameda County: Golden Hills (GH) (n = 212) and Golden Hills North (GHN) (n = 312). In Texas, we received samples from three wind energy facilities: Los Mirasoles (LM) (Hidalgo County and Starr County) (n = 252), Los Vientos (LV) (Starr County) (n = 568), and Wind Farm A (WFA) (San Patricio County and Bee County) (n = 393). Results: In California, the sex ratios of fatalities did not differ from 50:50, and the sex ratio remained stable over the survey years, but the seasonal timing of peak fatalities was inconsistent. In 2017 and 2018, fatalities peaked between September and October, whereas in 2019 and 2020 fatalities peaked between May and June. In Texas, sex ratios of fatalities varied between locations, with Los Vientos being female-skewed and Wind Farm A being male-skewed. The sex ratio of fatalities was also inconsistent over time. Lastly, for each location in Texas with multiple years studied, we observed a decrease in the proportion of female fatalities over time. Discussion: We observed unexpected variation in the seasonal timing of peak fatalities in California and differences in the sex ratio of fatalities across time and facility location in Texas. In Texas, proximity to different roost types (bridge or cave) likely influenced the sex ratio of fatalities at wind energy facilities. Due to the inconsistencies in the timing of peak female fatalities, we were unable to determine an optimum curtailment period; however, there may be location-specific trends that warrant future investigation. More research should be done over the entirety of the bat active season to better understand these trends in Texas. In addition, standardization of PCM studies could assist future research efforts, enhance current monitoring efforts, and facilitate research on post-construction monitoring studies.


Subject(s)
Chiroptera , Renewable Energy , Female , Male , Animals , Sex Ratio , Texas/epidemiology , Seasons
2.
Ecol Evol ; 13(7): e10245, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37424931

ABSTRACT

Vegetation loss is a primary cause of habitat degradation and results in a decline in reptile species abundance due to loss of refuge from predators and hot temperatures, and foraging opportunities. Texas horned lizards (Phrynosoma cornutum) have disappeared from many areas in Texas, especially from urbanized areas, probably in large part due to loss of suitable habitat. This species still occurs in some small towns in Texas that still contain suitable habitat. Long-term data from Kenedy and Karnes City, Texas indicate that when study sites experienced significant shrub and vegetation removal horned lizards declined by 79%. We hypothesize the decline was due to the degradation of the thermal landscape for these lizards. We determined the preferred temperature range (T set25 - T set75) of lizards at our study sites and took field measurements of body temperature (T b). Temperature loggers were also placed in three microhabitats across our study sites. Shrubs and vegetation provided the highest quality thermal environment, especially for about 5 h midday when temperatures in the open and buried under the surface in the open exceeded the lizards' critical maximum temperature (CTmax) or were above their preferred temperature range. Horned lizard density was positively related to the thermal quality of the habitat across our sites. Texas horned lizards in these towns require a heterogeneous mix of closely spaced microhabitats and especially thermal refugia, such as shrubs and vegetation along fence lines and in open fields. Maintaining thermal refugia is one of the most important and practical conservation actions that can be taken to help small ectotherms persist in modified human landscapes and cope with increasing temperatures due to climate change.

3.
Ecol Evol ; 13(4): e9966, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37013102

ABSTRACT

Interactions between invaders and resource availability may explain variation in their success or management efficacy. For widespread invaders, regional variation in plant response to nutrients can reflect phenotypic plasticity of the invader, genetic structure of invading populations, or a combination of the two. The wetland weed Alternanthera philoxeroides (alligatorweed) is established throughout the southeastern United States and California and has high genetic diversity despite primarily spreading clonally. Despite its history in the United States, the role of genetic variation for invasion and management success is only now being uncovered. To better understand how nutrients and genotype may influence A. philoxeroides invasion, we measured the response of plants from 26 A. philoxeroides populations (three cp haplotypes) to combinations of nitrogen (4 or 200 mg/L N) and phosphorus (0.4 or 40 mg/L P). We measured productivity (biomass accumulation and allocation), plant architecture (stem diameter and thickness, branching intensity), and foliar traits (toughness, dry matter content, percent N, and percent P). A short-term developmental assay was also conducted by feeding a subset of plants from the nutrient experiment to the biological control agent Agasicles hygrophila, to determine whether increased availability of N or P to its host influenced agent performance, as has been previously suggested. Alternanthera philoxeroides haplotype Ap1 was more plastic than other haplotypes in response to nutrient amendments, producing more than double the biomass from low to high N and 50%-68% higher shoot: root ratio than other haplotypes in the high N treatment. Alternanthera philoxeroides haplotypes differed in seven of 10 variables in response to increased N. We found no differences in short-term A. hygrophila development between haplotypes but mass was 23% greater in high than low N treatments. This study is the first to explore the interplay between nutrient availability, genetic variation, and phenotypic plasticity in invasive characteristics of the global invader, A. philoxeroides.

4.
AoB Plants ; 14(1): plab078, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35079330

ABSTRACT

Schinus terebinthifolia is a problematic invasive alien plant (IAP) in South Africa that is a high priority target for biological control. Biological control has been implemented in the states of Florida and Hawaii (USA), where S. terebinthifolia is also an IAP. Phylogeographic work determined that there have been multiple introductions of two lineages (haplotype A and B) into the USA. Haplotype A was introduced to western Florida and Hawaii, while haplotype B was introduced to eastern Florida. Haplotypes A and B have subsequently hybridized in Florida, resulting in novel plant genotypes. Biological control agents in the USA are known to vary in efficacies on the two different haplotypes and hybrids. This study used molecular techniques to uncover the source populations of S. terebinthifolia in South Africa using chloroplast DNA and microsatellites. Populations from the introduced ranges in Florida (east, west and hybrids) and Hawaii were included (n = 95). All South Africa populations (n = 51) were found to be haplotype A. Microsatellite analysis determined shared alleles with western Florida and Hawaiian populations. The likely source of South African S. terebinthifolia was determined to be western Florida through the horticultural trade. These results will help guide a biological control programme to source agents that perform well on these populations in the USA. Furthermore, the presence of only one haplotype in South Africa highlights the need to ensure no further introductions of other haplotypes of the plant are made, in order to avoid similar hybridization events like those recorded in Florida.

5.
Genome Biol Evol ; 14(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34849831

ABSTRACT

The southwestern and central United States serve as an ideal region to test alternative hypotheses regarding biotic diversification. Genomic data can now be combined with sophisticated computational models to quantify the impacts of paleoclimate change, geographic features, and habitat heterogeneity on spatial patterns of genetic diversity. In this study, we combine thousands of genotyping-by-sequencing (GBS) loci with mtDNA sequences (ND1) from the Texas horned lizard (Phrynosoma cornutum) to quantify relative support for different catalysts of diversification. Phylogenetic and clustering analyses of the GBS data indicate support for at least three primary populations. The spatial distribution of populations appears concordant with habitat type, with desert populations in AZ and NM showing the largest genetic divergence from the remaining populations. The mtDNA data also support a divergent desert population, but other relationships differ and suggest mtDNA introgression. Genotype-environment association with bioclimatic variables supports divergence along precipitation gradients more than along temperature gradients. Demographic analyses support a complex history, with introgression and gene flow playing an important role during diversification. Bayesian multispecies coalescent analyses with introgression (MSci) analyses also suggest that gene flow occurred between populations. Paleo-species distribution models support two southern refugia that geographically correspond to contemporary lineages. We find that divergence times are underestimated and population sizes are overestimated when introgression occurred and is ignored in coalescent analyses, and furthermore, inference of ancient introgression events and demographic history is sensitive to inclusion of a single recently admixed sample. Our analyses cannot refute the riverine barrier or glacial refugia hypotheses. Results also suggest that populations are continuing to diverge along habitat gradients. Finally, the strong evidence of admixture, gene flow, and mtDNA introgression among populations suggests that P. cornutum should be considered a single widespread species under the General Lineage Species Concept.


Subject(s)
Lizards , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Demography , Genetic Variation , Lizards/genetics , Phylogeny , Phylogeography , United States
6.
Ecol Evol ; 11(10): 5355-5363, 2021 May.
Article in English | MEDLINE | ID: mdl-34026012

ABSTRACT

Texas horned lizards (Phrynosoma cornutum) have a number of ways to avoid predation, including camouflage, sharp cranial horns, flattening of the body, and the ability to squirt blood from the eyes. These characteristics and their relatively low survival rates in the wild suggest these lizards are under high predation pressure. These lizards have been declining in much of their eastern range due to increased urbanization, agriculture, and loss of prey species. However, they can be still be found in some small south Texas towns where they can reach densities that are much higher (~50 lizards/ha) than in natural areas (~4-10 lizards/ha). We hypothesized that one reason for the high densities observed in these towns may be due to reduced predation pressure. We used model Texas horned lizards to test whether predation levels were lower in two south Texas towns than on a nearby ranch. We constructed models from urethane foam, a material that is ideal for preserving marks left behind by predators. Models (n = 126) and control pieces of foam (n = 21) were left in the field for 9 days in each location in early and late summer and subsequent predation marks were categorized by predator taxa. We observed significantly more predation attempts on the models than on controls and significantly fewer attempts in town (n = 1) compared with the ranch (n = 60). On the ranch, avian predation attempts appear to be common especially when the models did not match the color of the soil. Our results suggest that human-modified environments that have suitable habitat and food resources may provide a refuge for some prey species like horned lizards from predators.

7.
PeerJ ; 8: e10348, 2020.
Article in English | MEDLINE | ID: mdl-33240657

ABSTRACT

There are increasing concerns regarding bat mortality at wind energy facilities, especially as installed capacity continues to grow. In North America, wind energy development has recently expanded into the Lower Rio Grande Valley in south Texas where bat species had not previously been exposed to wind turbines. Our study sought to characterize genetic diversity, population structure, and effective population size in Dasypterus ega and D. intermedius, two tree-roosting yellow bats native to this region and for which little is known about their population biology and seasonal movements. There was no evidence of population substructure in either species. Genetic diversity at mitochondrial and microsatellite loci was lower in these yellow bat taxa than in previously studied migratory tree bat species in North America, which may be due to the non-migratory nature of these species at our study site, the fact that our study site is located at a geographic range end for both taxa, and possibly weak ascertainment bias at microsatellite loci. Historical effective population size (NEF) was large for both species, while current estimates of Ne had upper 95% confidence limits that encompassed infinity. We found evidence of strong mitochondrial differentiation between the two putative subspecies of D. intermedius (D. i. floridanus and D. i. intermedius) which are sympatric in this region of Texas, yet little differentiation using microsatellite loci. We suggest this pattern is due to secondary contact and hybridization and possibly incomplete lineage sorting at microsatellite loci. We also found evidence of some hybridization between D. ega and D. intermedius in this region of Texas. We recommend that our data serve as a starting point for the long-term genetic monitoring of these species in order to better understand the impacts of wind-related mortality on these populations over time.

8.
Sci Rep ; 10(1): 20390, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33230206

ABSTRACT

Peru is experiencing a "gastronomic boom" that is increasing the demand for seafood. We investigated two implicit assumptions of two popular sustainable seafood consumer-based initiatives: (1) seafood is labelled correctly, and (2) the recommended species are healthy for consumers. We used DNA barcoding to determine the taxonomic identity of 449 seafood samples from markets and restaurants and analysed the concentration of total mercury (THg) in a sub-sample (271 samples) of these. We found that a third of seafood is mislabelled and that over a quarter of all samples had mercury levels above the upper limit recommended by the US EPA (300 ng/g ww). Additionally, 30% of samples were threatened and protected species. Mislabelling often occurred for economic reasons and the lack of unique common names. Mislabelled samples also had significantly higher mercury concentrations than correctly labelled samples. The "best choice" species compiled from two sustainable seafood guides had less mislabelling, and when identified correctly through DNA barcoding, had on average lower mercury than the other species. Nevertheless, some high mercury species are included in these lists. Mislabelling makes the efforts of seafood campaigns less effective as does the inclusion of threatened species and species high in mercury.

9.
Zootaxa ; 4609(2): zootaxa.4609.2.6, 2019 May 23.
Article in English | MEDLINE | ID: mdl-31717109

ABSTRACT

A new species of gecko, Lygodactylus tsavoensis sp. nov., is described from Tsavo Conservation Area in southeastern Kenya. It is a member of the Lygodactylus picturatus group and is distinguished from other closely related species by its small size (maximum 35 mm SVL), five postpostmental scales, seven precloacal pores, and a distinctive color pattern. A pale Y-shaped mark on the crown continues along the vertebral midline to the tail base and is flanked by a pair of dark stripes. In addition to its morphological differences, the new species is genetically divergent from its most closely related congeners, L. keniensis and L. wojnowskii. The new species is widespread in the southern and southeastern arid lands within the Tsavo Conservation Area, mainly in Taita-Taveta, Kitui, Makueni, Kajiado, Kilifi, Kwale and Tana River Counties. It is chiefly associated with bushland with short trees, including areas of anthropogenic influence.


Subject(s)
Apiaceae , Lizards , Animal Distribution , Animals , Kenya , Trees
10.
PeerJ ; 7: e7746, 2019.
Article in English | MEDLINE | ID: mdl-31592183

ABSTRACT

The Texas horned lizard (Phrynosoma cornutum) inhabits much of the southern Great Plains of North America. Since the 1950s, this species has been extirpated from much of its eastern range and has suffered declines and local extinctions elsewhere, primarily due to habitat loss. Plans are underway to use captive breeding to produce large numbers of Texas horned lizards for reintroduction into areas that were historically occupied by this species and that currently have suitable habitat. We used mitochondrial markers and nuclear microsatellite markers to determine levels of genetic diversity and population structure in 542 Texas horned lizards sampled from across Texas and some neighboring states to help inform these efforts. Texas horned lizards still retain high genetic diversity in many parts of their current range. We found two highly divergent mitochondrial clades (eastern and western) and three major genetic groupings at nuclear microsatellite loci: a west group corresponding to the western mitochondrial clade and north and south groups within the eastern mitochondrial clade. We also found some evidence for human-mediated movement between these genetic clusters that is probably related to the historical importance of this species in the pet trade and as an iconic symbol of the southwestern United States. We do not know, however, if there are fitness costs associated with admixture (especially for the western and eastern clades) or if there are fitness costs to moving these lizards into habitats that are distinctly different from their ancestral areas. If present, either one or both of these fitness costs would decrease the effectiveness of reintroduction efforts. We therefore recommend that reintroduction efforts should maintain current genetic structure by restricting breeding to be between individuals within their respective genetic clusters, and by reintroducing individuals only into those areas that encompass their respective genetic clusters. This cautionary approach is based on the strong divergence between genetic groupings and their correspondence to different ecoregions.

11.
PeerJ ; 5: e3985, 2017.
Article in English | MEDLINE | ID: mdl-29114441

ABSTRACT

Although the ultimate causes of high bat fatalities at wind farms are not well understood, several lines of evidence suggest that bats are attracted to wind turbines. One hypothesis is that bats would be attracted to turbines as a foraging resource if the insects that bats prey upon are commonly present on and around the turbine towers. To investigate the role that foraging activity may play in bat fatalities, we conducted a series of surveys at a wind farm in the southern Great Plains of the US from 2011-2016. From acoustic monitoring we recorded foraging activity, including feeding buzzes indicative of prey capture, in the immediate vicinity of turbine towers from all six bat species known to be present at this site. From insect surveys we found Lepidoptera, Coleoptera, and Orthoptera in consistently high proportions over several years suggesting that food resources for bats were consistently available at wind turbines. We used DNA barcoding techniques to assess bat diet composition of (1) stomach contents from 47 eastern red bat (Lasiurus borealis) and 24 hoary bat (Lasiurus cinereus) carcasses collected in fatality searches, and (2) fecal pellets from 23 eastern red bats that were found on turbine towers, transformers, and tower doors. We found that the majority of the eastern red bat and hoary bat stomachs, the two bat species most commonly found in fatality searches at this site, were full or partially full, indicating that the bats were likely killed while foraging. Although Lepidoptera and Orthoptera dominated the diets of these two bat species, both consumed a range of prey items with individual bats having from one to six insect species in their stomachs at the time of death. The prey items identified from eastern red bat fecal pellets showed similar results. A comparison of the turbine insect community to the diet analysis results revealed that the most abundant insects at wind turbines, including terrestrial insects such as crickets and several important crop pests, were also commonly eaten by eastern red and hoary bats. Collectively, these findings suggest that bats are actively foraging around wind turbines and that measures to minimize bat fatalities should be broadly implemented at wind facilities.

12.
Zootaxa ; 4061(4): 418-28, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-27395510

ABSTRACT

A new species of Lygodactylus gecko (L. wojnowskii sp. nov.) is described from the vicinity of Chogoria Town on the eastern lower slopes of Mt. Kenya in central Kenya. A phylogeny based on mitochondrial and nuclear DNA shows that the proposed new taxon is distinct within the Lygodactylus picturatus group and is the sister lineage to L. mombasicus and L. kimhowelli. It is morphologically very similar to both L. mombasicus and L. keniensis but its dorsal coloration and pattern is different. Its dorsum is grey with dark stripes while its head has black and white stripes that form a Y-shaped mark. While the male throat pattern is similar to that of L. mombasicus, that of the female is like that of females and some males of Lygodactylus keniensis. Lygodactylus wojnowskii sp. nov. has a higher number of post-postmental scales (6) than do its close relatives (5). The new species is distributed on the lower slopes of mid-altitude areas on eastern Mt. Kenya, but it may occur in other areas at similar elevations in central Kenya. It is associated with short, scattered trees within agricultural areas. It has not yet been recorded within the protected Chogoria forest block of Mt. Kenya forest. It is likely present in Mwea National Reserve as it occurs in nearby areas.


Subject(s)
Lizards/classification , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , Ecosystem , Female , Forests , Kenya , Lizards/anatomy & histology , Lizards/genetics , Lizards/growth & development , Male , Organ Size , Phylogeny
13.
Mol Ecol ; 18(13): 2832-43, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19500250

ABSTRACT

What is the relationship between genetic or environmental variation and the variation in messenger RNA (mRNA) expression? To address this, microarrays were used to examine the effect of genetic and environmental variation on cardiac mRNA expression for metabolic genes in three groups of Fundulus heteroclitus: (i) individuals sampled in the field (field), (ii) field individuals acclimated for 6 months to laboratory conditions (acclimated), or (iii) individuals bred for 10 successive generations in a laboratory environment (G10). The G10 individuals have significantly less genetic variation than individuals obtained in the field and had a significantly lower variation in mRNA expression across all genes in comparison to the other two groups (P = 0.001). When examining the gene specific variation, 22 genes had variation in expression that was significantly different among groups with lower variation in G10 individuals than in acclimated individuals. Additionally, there were fewer genes with significant differences in expression among G10 individuals vs. either acclimated or field individuals: 66 genes have statistically different levels of expression vs. 107 or 97 for acclimated or field groups. Based on the permutation of the data, these differences in the number of genes with significant differences among individuals within a group are unlikely to occur by chance (P < 0.01). Surprisingly, variation in mRNA expression in field individuals is lower than in acclimated individuals. Relative to the variation among individual within a group, few genes have significant differences in expression among groups (seven, 2.3%) and none of these are different between acclimated and field individuals. The results support the concept that genetic variation affects variation in mRNA expression and also suggests that temporal environmental variation associated with estuarine environments does not increase the variation among individuals or add to the differences among groups.


Subject(s)
Environment , Fundulidae/genetics , Genetic Variation , Genetics, Population , Acclimatization/genetics , Animals , Cluster Analysis , Female , Gene Expression , Gene Expression Profiling , Male , Microsatellite Repeats , Models, Genetic , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Sex Factors
14.
Mol Ecol Resour ; 8(3): 596-8, 2008 May.
Article in English | MEDLINE | ID: mdl-21585843

ABSTRACT

We developed 12 polymorphic microsatellite loci for the buffy flower bat (Erophylla sezekorni) and 10 loci for Waterhouse's big-eared bat (Macrotus waterhousii). In E. sezekorni, we tested 65 individuals from three islands, Cuba, Exuma, and Abaco. Mean number of alleles per locus was 10.7 (range 5-20). In M. waterhousii, we tested 39 individuals from one island, Exuma. Mean number of alleles per locus was 6.9 (range 4-13). We will use these markers to study the phylogeography and mating system of these species.

16.
Proc Biol Sci ; 273(1593): 1483-90, 2006 Jun 22.
Article in English | MEDLINE | ID: mdl-16777742

ABSTRACT

The extent of dispersal by pelagic larvae in marine environments, including coral reefs, is central for understanding local population dynamics and designing sustainable marine reserves. We present here the first example of a clear stepping-stone genetic structure throughout the Caribbean basin for a common coral reef species, the French grunt (Haemulon flavolineatum). Analysis of microsatellite DNA markers indicated that French grunt population structure may be characterized by overlapping populations throughout the Caribbean, influenced by independent population dynamics but with no fixed geographical boundaries. In addition, different spatial genetic patterns were found in different oceanographic regions. A second species, the bluehead wrasse (Thalassoma bifasciatum), has a much longer pelagic larval duration than French grunts and showed no explicit spatial pattern of genetic variation. This finding is concordant with the hypothesis of a positive relationship between larval dispersal and duration in the plankton. While the magnitude of the genetic signal of population structure in French grunts was very low (F(ST) approximately 0.003), the pattern of isolation-by-distance throughout the Caribbean indicated considerable population structure with important ecological and conservation significance.


Subject(s)
Animal Migration , Perciformes/physiology , Animals , Caribbean Region , Genotype , Geography , Larva/genetics , Larva/physiology , Microsatellite Repeats , Oceans and Seas , Perciformes/genetics , Polymorphism, Genetic , Population Dynamics , Sequence Analysis, DNA
17.
Mol Ecol ; 14(12): 3643-56, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16202086

ABSTRACT

Brazilian peppertree (Schinus terebinthifolius) is a woody perennial that has invaded much of Florida. This native of northeastern Argentina, Paraguay, and Brazil was brought as an ornamental to both the west and east coasts of Florida at the end of the 19th century. It was recorded as an invader of natural areas in the 1950s, and has since extended its range to cover over 280 000 ha. Our goals were to understand the history of this invasion, as one step toward understanding why this exotic was so successful, and ultimately to improve development of biological control agents. We sampled plants from the native and exotic ranges, particularly Florida, and genotyped these individuals at nuclear and chloroplast loci. Nuclear microsatellite and cpDNA loci reveal strong genetic population structure consistent with limited dispersal in the introduced and native ranges. Bayesian clustering of microsatellite data separates the east and west coast plants in Florida into distinct populations. The two chloroplast haplotypes found in Florida are also concordant with this separation: one predominates on the east coast, the other on the west coast. Analysis of samples collected in South America shows that haplotypes as distinct as the two in Florida are unlikely to have come from a single source population. We conclude that the genetic evidence supports two introductions of Brazilian peppertree into Florida and extensive hybridization between them. The west coast genotype likely came from coastal Brazil at about 27 degrees south, whereas the east coast genotype probably originated from another, as yet unidentified site. As a result of hybridization, the Florida population does not exhibit low genetic variation compared to populations in the native range, possibly increasing its ability to adapt to novel environments. Hybridization also has important consequences for the selection of biocontrol agents since it will not be possible to identify closely co-adapted natural enemies in the native range, necessitating more extensive host testing.


Subject(s)
Anacardiaceae/genetics , DNA, Chloroplast/genetics , Microsatellite Repeats/genetics , Phylogeny , Argentina , Brazil , Cluster Analysis , Florida , Genetic Variation , Haplotypes , Hawaii , Hybridization, Genetic , Paraguay , Texas , United States Virgin Islands
SELECTION OF CITATIONS
SEARCH DETAIL
...