Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(23): 8756-8765, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38873065

ABSTRACT

Protein-protein interactions of c-Myc (MYC) are often regulated by post-translational modifications (PTMs), such as phosphorylation, and crosstalk thereof. Studying these interactions requires proteins with unique PTM patterns, which are challenging to obtain by recombinant methods. Standard peptide synthesis and native chemical ligation can produce such modified proteins, but are time-consuming and therefore typically limited to the study of individual PTMs. Herein, we report the development of flow-based methods for the rapid synthesis of phosphorylated MYC sequences (up to 84 AA), and demonstrate the versatility of this approach for the incorporation of other PTMs (N ε-methylation, sulfation, acetylation, glycosylation) and combinations thereof. Peptides containing up to seven PTMs and phosphorylation at up to five sites were successfully prepared and isolated in high yield and purity. We further produced ten PTM-decorated analogues of the MYC Transactivation Domain (TAD) to screen for binding to the tumor suppressor protein, Bin1, using heteronuclear NMR and native mass spectrometry. We determined the effects of phosphorylation and glycosylation on the strength of the MYC:Bin1 interaction, and reveal an influence of MYC sequence length on binding. Our platform for the rapid synthesis of MYC sequences up to 84 AA with distinct PTM patterns thus enables the systematic study of PTM function at a molecular level, and offers a convenient way for expedited screening of constructs.

2.
Elife ; 122023 06 02.
Article in English | MEDLINE | ID: mdl-37265064

ABSTRACT

The glucagon-like peptide-1 receptor (GLP1R) is a broadly expressed target of peptide hormones with essential roles in energy and glucose homeostasis, as well as of the blockbuster weight-loss drugs semaglutide and liraglutide. Despite its large clinical relevance, tools to investigate the precise activation dynamics of this receptor with high spatiotemporal resolution are limited. Here, we introduce a novel genetically encoded sensor based on the engineering of a circularly permuted green fluorescent protein into the human GLP1R, named GLPLight1. We demonstrate that fluorescence signal from GLPLight1 accurately reports the expected receptor conformational activation in response to pharmacological ligands with high sensitivity (max ΔF/F0=528%) and temporal resolution (τON = 4.7 s). We further demonstrated that GLPLight1 shows comparable responses to glucagon-like peptide-1 (GLP-1) derivatives as observed for the native receptor. Using GLPLight1, we established an all-optical assay to characterize a novel photocaged GLP-1 derivative (photo-GLP1) and to demonstrate optical control of GLP1R activation. Thus, the new all-optical toolkit introduced here enhances our ability to study GLP1R activation with high spatiotemporal resolution.


Subject(s)
Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Humans , Glucagon-Like Peptide-1 Receptor/genetics , Liraglutide/pharmacology
3.
Cell Chem Biol ; 29(12): 1729-1738.e8, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36481097

ABSTRACT

Orexin neuropeptides carry out important neuromodulatory functions in the brain, yet tools to precisely control the activation of endogenous orexin signaling are lacking. Here, we developed a photocaged orexin-B (photo-OXB) through a C-terminal photocaging strategy. We show that photo-OXB is unable to activate its cognate receptors in the dark but releases functionally active native orexin-B upon uncaging by illumination with UV-visible (UV-vis) light (370-405 nm). We established an all-optical assay combining photo-OXB with a genetically encoded orexin biosensor and used it to characterize the efficiency and spatial profile of photo-OXB uncaging. Finally, we demonstrated that photo-OXB enables optical control over orexin signaling with fine temporal precision both in vitro and ex vivo. Thus, our photocaging strategy and photo-OXB advance the chemical biological toolkit by introducing a method for the optical control of peptide signaling and physiological function.


Subject(s)
Intracellular Signaling Peptides and Proteins , Neuropeptides , Orexins , Orexin Receptors , Signal Transduction , Receptors, G-Protein-Coupled
4.
Front Pharmacol ; 13: 832589, 2022.
Article in English | MEDLINE | ID: mdl-35341216

ABSTRACT

Signaling through calcitonin gene-related peptide (CGRP) receptors is associated with pain, migraine, and energy expenditure. Small molecule and monoclonal antibody CGRP receptor antagonists that block endogenous CGRP action are in clinical use as anti-migraine therapies. By comparison, the potential utility of peptide antagonists has received less attention due to suboptimal pharmacokinetic properties. Lipidation is an established strategy to increase peptide half-life in vivo. This study aimed to explore the feasibility of developing lipidated CGRP peptide antagonists that retain receptor antagonist activity in vitro and attenuate endogenous CGRP action in vivo. CGRP peptide analogues based on the archetypal CGRP receptor antagonist, CGRP8-37, were palmitoylated at the N-terminus, position 24, and near the C-terminus at position 35. The antagonist activities of the lipidated peptide analogues were tested in vitro using transfected Cos-7 cells expressing either the human or mouse CGRP receptor, amylin subtype 1 (AMY1) receptor, adrenomedullin (AM) receptors, or calcitonin receptor. Antagonist activities were also evaluated in SK-N-MC cells that endogenously express the human CGRP receptor. Lipidated peptides were then tested for their ability to antagonize endogenous CGRP action in vivo using a capsaicin-induced dermal vasodilation (CIDV) model in C57/BL6J mice. All lipidated peptides except for the C-terminally modified analogue retained potent antagonist activity compared to CGRP8-37 towards the CGRP receptor. The lipidated peptides also retained, and sometimes gained, antagonist activities at AMY1, AM1 and AM2 receptors. Several lipidated peptides produced robust inhibition of CIDV in mice. This study demonstrates that selected lipidated peptide antagonists based on αCGRP8-37 retain potent antagonist activity at the CGRP receptor and are capable of inhibition of endogenous CGRP action in vivo. These findings suggest that lipidation can be applied to peptide antagonists, such as αCGRP8-37 and are a potential strategy for antagonizing CGRP action.

5.
JACS Au ; 1(10): 1527-1540, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34723257

ABSTRACT

Natural products that contain distinctive chemical functionality can serve as useful starting points to develop Nature's compounds into viable therapeutics. Peptide natural products, an under-represented class of medicines, such as ribosomally synthesized and post-translationally modified peptides (RiPPs), often contain noncanonical amino acids and structural motifs that give rise to potent biological activity. However, these motifs can be difficult to obtain synthetically, thereby limiting the transition of RiPPs to the clinic. Aminovinyl cysteine containing peptides, which display potent antimicrobial or anticancer activity, possess an intricate C-terminal ring that is critical for bioactivity. To date, successful methods for the total chemical synthesis of such peptides are yet to be realized, although several advancements have been achieved. In this perspective, we review this burgeoning class of aminovinyl cysteine peptides and critically evaluate the chemical strategies to install the distinct aminovinyl cysteine motif.

6.
Angew Chem Int Ed Engl ; 57(36): 11640-11643, 2018 09 03.
Article in English | MEDLINE | ID: mdl-29978532

ABSTRACT

We report a new method herein coined SP-CLipPA (solid-phase cysteine lipidation of a peptide or amino acid) for the synthesis of mono-S-lipidated peptides. This technique utilizes thiol-ene chemistry for conjugation of a vinyl ester to a free thiol of a semiprotected, resin-bound peptide. Advantages of SP-CLipPA include: ease of handling, conversions of up to 91 %, by-product removal by simple filtration, and a single purification step. Additionally, the desired lipidated products show high chromatographic separation from impurities, thus facilitating RP-HPLC purification. To showcase the utility of SP-CLipPA, we synthesized a potent calcitonin gene-related peptide (CGRP) receptor antagonist peptide in excellent yield and purity. This peptide, selected from a series of lipidated analogues of CGRP8-37 and CGRP7-37 , has potential for the treatment of migraine.


Subject(s)
Calcitonin Gene-Related Peptide Receptor Antagonists/chemical synthesis , Cysteine/chemistry , Lipids/chemistry , Peptides/chemical synthesis , Solid-Phase Synthesis Techniques/methods , Amino Acid Sequence , Calcitonin Gene-Related Peptide Receptor Antagonists/chemistry , Cysteine/chemical synthesis , Lipids/chemical synthesis , Peptides/chemistry , Stereoisomerism
7.
Chemistry ; 24(68): 17869-17880, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-29987917

ABSTRACT

The development of synthetic methods to prepare conformationally constrained peptides and peptide-polyketide hybrids remain an important chemical challenge. It is known that structural rigidity correlates with the specificity, bioactivity, and stability of these peptide systems, thus rigid systems are particularly attractive leads for development of potent biopharmaceuticals. Herein we provide an overview of recent developments in the syntheses of naturally derived constrained peptides and peptide-polyketide hybrids, with a particular emphasis on those systems containing an ene-like bond.


Subject(s)
Biological Products/chemical synthesis , Peptides, Cyclic/chemical synthesis , Polyketides/chemical synthesis , Solid-Phase Synthesis Techniques/methods , Alkaloids/chemical synthesis , Alkaloids/chemistry , Alpha-Amanitin/chemical synthesis , Alpha-Amanitin/chemistry , Amino Acid Sequence , Amino Acids/chemical synthesis , Amino Acids/chemistry , Biological Products/chemistry , Imines/chemical synthesis , Imines/chemistry , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Molecular Conformation , Peptides, Cyclic/chemistry , Polyketides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...