Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Hum Mutat ; 43(11): 1507-1518, 2022 11.
Article in English | MEDLINE | ID: mdl-36086948

ABSTRACT

The advancements made in next-generation sequencing (NGS) technology over the past two decades have transformed our understanding of genetic variation in humans and had a profound impact on our ability to diagnose patients with rare genetic diseases. In this review, we discuss the recently developed application of rapid NGS techniques, used to diagnose pediatric patients with suspected rare diseases who are critically ill. We highlight the challenges associated with performing such clinical diagnostics tests in terms of the laboratory infrastructure, bioinformatic analysis pipelines, and the ethical considerations that need to be addressed. We end by looking at what future developments in this field may look like and how they can be used to augment the genetic data to further improve the diagnostic rates for these high-priority patients.


Subject(s)
High-Throughput Nucleotide Sequencing , Pediatrics , Child , Chromosome Mapping , High-Throughput Nucleotide Sequencing/methods , Humans
2.
J Clin Endocrinol Metab ; 107(1): e254-e263, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34402903

ABSTRACT

BACKGROUND: Primary ovarian insufficiency (POI) affects 1% of women and is associated with significant medical consequences. A genetic cause for POI can be found in up to 30% of women, elucidating key roles for these genes in human ovary development. OBJECTIVE: We aimed to identify the genetic mechanism underlying early-onset POI in 2 sisters from a consanguineous pedigree. METHODS: Genome sequencing and variant filtering using an autosomal recessive model was performed in the 2 affected sisters and their unaffected family members. Quantitative reverse transcriptase PCR (qRT-PCR) and RNA sequencing were used to study the expression of key genes at critical stages of human fetal gonad development (Carnegie Stage 22/23, 9 weeks post conception (wpc), 11 wpc, 15/16 wpc, 19/20 wpc) and in adult tissue. RESULTS: Only 1 homozygous variant cosegregating with the POI phenotype was found: a single nucleotide substitution in zinc finger SWIM-type containing 7 (ZSWIM7), NM_001042697.2: c.173C > G; resulting in predicted loss-of-function p.(Ser58*). qRT-PCR demonstrated higher expression of ZSWIM7 in the 15/16 wpc ovary compared with testis, corresponding to peak meiosis in the fetal ovary. RNA sequencing of fetal gonad samples showed that ZSWIM7 has a similar temporal expression profile in the developing ovary to other homologous recombination genes. MAIN CONCLUSIONS: Disruption of ZSWIM7 is associated with POI in humans. ZSWIM7 is likely to be important for human homologous recombination; these findings expand the range of genes associated with POI in women.


Subject(s)
Amenorrhea/genetics , DNA-Binding Proteins/genetics , Meiosis/genetics , Oogenesis/genetics , Primary Ovarian Insufficiency/genetics , Adolescent , Amenorrhea/diagnosis , Child , DNA Mutational Analysis , Female , Humans , Loss of Function Mutation , Ovary/growth & development , Pedigree , Point Mutation , Primary Ovarian Insufficiency/complications , Primary Ovarian Insufficiency/diagnosis , RNA-Seq , Zinc Fingers
3.
N Engl J Med ; 385(20): 1868-1880, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34758253

ABSTRACT

BACKGROUND: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection. METHODS: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis. RESULTS: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives. CONCLUSIONS: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.).


Subject(s)
Genome, Human , Rare Diseases/genetics , Adolescent , Adult , Child , Child, Preschool , Family Characteristics , Female , Genetic Variation , Humans , Male , Middle Aged , Pilot Projects , Polymerase Chain Reaction , Rare Diseases/diagnosis , Sensitivity and Specificity , State Medicine , United Kingdom , Whole Genome Sequencing , Young Adult
4.
J Clin Invest ; 131(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34730112

ABSTRACT

The positive regulatory (PR) domain containing 13 (PRDM13) putative chromatin modifier and transcriptional regulator functions downstream of the transcription factor PTF1A, which controls GABAergic fate in the spinal cord and neurogenesis in the hypothalamus. Here, we report a recessive syndrome associated with PRDM13 mutation. Patients exhibited intellectual disability, ataxia with cerebellar hypoplasia, scoliosis, and delayed puberty with congenital hypogonadotropic hypogonadism (CHH). Expression studies revealed Prdm13/PRDM13 transcripts in the developing hypothalamus and cerebellum in mouse and human. An analysis of hypothalamus and cerebellum development in mice homozygous for a Prdm13 mutant allele revealed a significant reduction in the number of Kisspeptin (Kiss1) neurons in the hypothalamus and PAX2+ progenitors emerging from the cerebellar ventricular zone. The latter was accompanied by ectopic expression of the glutamatergic lineage marker TLX3. Prdm13-deficient mice displayed cerebellar hypoplasia and normal gonadal structure, but delayed pubertal onset. Together, these findings identify PRDM13 as a critical regulator of GABAergic cell fate in the cerebellum and of hypothalamic kisspeptin neuron development, providing a mechanistic explanation for the cooccurrence of CHH and cerebellar hypoplasia in this syndrome. To our knowledge, this is the first evidence linking disrupted PRDM13-mediated regulation of Kiss1 neurons to CHH in humans.


Subject(s)
Cerebellum/abnormalities , Histone-Lysine N-Methyltransferase , Hypogonadism , Hypothalamus/enzymology , Mutation , Nervous System Malformations , Transcription Factors , Animals , Cerebellum/enzymology , Developmental Disabilities/enzymology , Developmental Disabilities/genetics , Disease Models, Animal , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Hypogonadism/enzymology , Hypogonadism/genetics , Mice , Mice, Mutant Strains , Nervous System Malformations/enzymology , Nervous System Malformations/genetics , Neurons/enzymology , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Neurol Genet ; 6(4): e448, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32637631

ABSTRACT

OBJECTIVE: To report a series of patients with cerebral arteriopathy associated with heterozygous variants in the casitas B-lineage lymphoma (CBL) gene and examine the functional role of the identified mutant Cbl protein. We hypothesized that mutated Cbl fails to act as a negative regulator of the RAS-mitogen-activated protein kinases (MAPK) signaling pathway, resulting in enhanced vascular fibroblast proliferation and migration and enhanced angiogenesis and collateral vessel formation. METHODS: We performed whole-exome sequencing in 11 separate families referred to Great Ormond Street Hospital, London, with suspected genetic cause for clinical presentation with severe progressive cerebral arteriopathy. RESULTS: We identified heterozygous variants in the CBL gene in 5 affected cases from 3 families. We show that impaired CBL-mediated degradation of cell surface tyrosine kinase receptors and dysregulated intracellular signaling through the RAS-MAPK pathway contribute to the pathogenesis of the observed arteriopathy. Mutated CBL failed to control the angiogenic signal relay of vascular endothelial growth factor receptor 2, leading to prolonged tyrosine kinase signaling, thus driving angiogenesis and collateral vessel formation. Mutant Cbl promoted myofibroblast migration and proliferation contributing to vascular occlusive disease; these effects were abrogated following treatment with a RAF-RAS-MAPK pathway inhibitor. CONCLUSIONS: We provide a possible mechanism for the arteriopathy associated with heterozygous CBL variants. Identification of the key role for the RAS-MAPK pathway in CBL-mediated cerebral arteriopathy could facilitate identification of novel or repurposed druggable targets for treating these patients and may also provide therapeutic clues for other cerebral arteriopathies.

7.
J Clin Endocrinol Metab ; 104(12): 5737-5750, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31504653

ABSTRACT

CONTEXT: Congenital hypopituitarism (CH) is rarely observed in combination with severe joint contractures (arthrogryposis). Schaaf-Yang syndrome (SHFYNG) phenotypically overlaps with Prader-Willi syndrome, with patients also manifesting arthrogryposis. L1 syndrome, a group of X-linked disorders that include hydrocephalus and lower limb spasticity, also rarely presents with arthrogryposis. OBJECTIVE: We investigated the molecular basis underlying the combination of CH and arthrogryposis in five patients. PATIENTS: The heterozygous p.Q666fs*47 mutation in the maternally imprinted MAGEL2 gene, previously described in multiple patients with SHFYNG, was identified in patients 1 to 4, all of whom manifested growth hormone deficiency and variable SHFYNG features, including dysmorphism, developmental delay, sleep apnea, and visual problems. Nonidentical twins (patients 2 and 3) had diabetes insipidus and macrocephaly, and patient 4 presented with ACTH insufficiency. The hemizygous L1CAM variant p.G452R, previously implicated in patients with L1 syndrome, was identified in patient 5, who presented with antenatal hydrocephalus. RESULTS: Human embryonic expression analysis revealed MAGEL2 transcripts in the developing hypothalamus and ventral diencephalon at Carnegie stages (CSs) 19, 20, and 23 and in the Rathke pouch at CS20 and CS23. L1CAM was expressed in the developing hypothalamus, ventral diencephalon, and hindbrain (CS19, CS20, CS23), but not in the Rathke pouch. CONCLUSION: We report MAGEL2 and L1CAM mutations in four pedigrees with variable CH and arthrogryposis. Patients presenting early in life with this combined phenotype should be examined for features of SHFYNG and/or L1 syndrome. This study highlights the association of hypothalamo-pituitary disease with MAGEL2 and L1CAM mutations.


Subject(s)
Arthrogryposis/genetics , Genetic Diseases, X-Linked/genetics , Hypopituitarism/congenital , Neural Cell Adhesion Molecule L1/genetics , Proteins/genetics , Child , Child, Preschool , Diencephalon/metabolism , Female , Humans , Hypothalamus/metabolism , Infant , Infant, Newborn , Male , Mutation , Pedigree , Phenotype , Exome Sequencing
8.
EBioMedicine ; 42: 470-480, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30878599

ABSTRACT

BACKGROUND: The heterotrimeric GTP-binding protein eIF2 forms a ternary complex with initiator methionyl-tRNA and recruits it to the 40S ribosomal subunit for start codon selection and thereby initiates protein synthesis. Mutations in EIF2S3, encoding the eIF2γ subunit, are associated with severe intellectual disability and microcephaly, usually as part of MEHMO syndrome. METHODS: Exome sequencing of the X chromosome was performed on three related males with normal head circumferences and mild learning difficulties, hypopituitarism (GH and TSH deficiencies), and an unusual form of glucose dysregulation. In situ hybridisation on human embryonic tissue, EIF2S3-knockdown studies in a human pancreatic cell line, and yeast assays on the mutated corresponding eIF2γ protein, were performed in this study. FINDINGS: We report a novel hemizygous EIF2S3 variant, p.Pro432Ser, in the three boys (heterozygous in their mothers). EIF2S3 expression was detectable in the developing pituitary gland and pancreatic islets of Langerhans. Cells lacking EIF2S3 had increased caspase activity/cell death. Impaired protein synthesis and relaxed start codon selection stringency was observed in mutated yeast. INTERPRETATION: Our data suggest that the p.Pro432Ser mutation impairs eIF2γ function leading to a relatively mild novel phenotype compared with previous EIF2S3 mutations. Our studies support a critical role for EIF2S3 in human hypothalamo-pituitary development and function, and glucose regulation, expanding the range of phenotypes associated with EIF2S3 mutations beyond classical MEHMO syndrome. Untreated hypoglycaemia in previous cases may have contributed to their more severe neurological impairment and seizures in association with impaired EIF2S3. FUND: GOSH, MRF, BRC, MRC/Wellcome Trust and NIGMS funded this study.


Subject(s)
Eukaryotic Initiation Factor-2/genetics , Genes, X-Linked , Glucose/metabolism , Hypopituitarism/etiology , Hypopituitarism/metabolism , Phenotype , Amino Acid Substitution , Apoptosis , Brain/diagnostic imaging , Brain/metabolism , Cell Line , Child, Preschool , Eukaryotic Initiation Factor-2/chemistry , Eukaryotic Initiation Factor-2/metabolism , Gene Knockdown Techniques , Humans , Hypopituitarism/diagnosis , In Situ Hybridization , Infant , Magnetic Resonance Imaging , Mutation , Pedigree , Polymorphism, Single Nucleotide , Protein Biosynthesis
9.
J Med Genet ; 55(11): 721-728, 2018 11.
Article in English | MEDLINE | ID: mdl-30049826

ABSTRACT

BACKGROUND: Rare genetic conditions are frequent risk factors for, or direct causes of, paediatric intensive care unit (PICU) admission. Such conditions are frequently suspected but unidentified at PICU admission. Compassionate and effective care is greatly assisted by definitive diagnostic information. There is therefore a need to provide a rapid genetic diagnosis to inform clinical management.To date, whole genome sequencing (WGS) approaches have proved successful in diagnosing a proportion of children with rare diseases, but results may take months to report. Our aim was to develop an end-to-end workflow for the use of rapid WGS for diagnosis in critically ill children in a UK National Health Service (NHS) diagnostic setting. METHODS: We sought to establish a multidisciplinary Rapid Paediatric Sequencing team for case selection, trio WGS, rapid bioinformatics sequence analysis and a phased analysis and reporting system to prioritise genes with a high likelihood of being causal. RESULTS: Trio WGS in 24 critically ill children led to a molecular diagnosis in 10 (42%) through the identification of causative genetic variants. In 3 of these 10 individuals (30%), the diagnostic result had an immediate impact on the individual's clinical management. For the last 14 trios, the shortest time taken to reach a provisional diagnosis was 4 days (median 8.5 days). CONCLUSION: Rapid WGS can be used to diagnose and inform management of critically ill children within the constraints of an NHS clinical diagnostic setting. We provide a robust workflow that will inform and facilitate the rollout of rapid genome sequencing in the NHS and other healthcare systems globally.


Subject(s)
Critical Illness , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Whole Genome Sequencing , Child , Disease Management , Genome-Wide Association Study/methods , Genome-Wide Association Study/standards , Humans , Intensive Care Units, Pediatric , Rare Diseases , Whole Genome Sequencing/methods , Workflow
10.
Acta Neuropathol ; 135(5): 757-777, 2018 05.
Article in English | MEDLINE | ID: mdl-29541918

ABSTRACT

Adamantinomatous craniopharyngiomas (ACPs) are clinically challenging tumours, the majority of which have activating mutations in CTNNB1. They are histologically complex, showing cystic and solid components, the latter comprised of different morphological cell types (e.g. ß-catenin-accumulating cluster cells and palisading epithelium), surrounded by a florid glial reaction with immune cells. Here, we have carried out RNA sequencing on 18 ACP samples and integrated these data with an existing ACP transcriptomic dataset. No studies so far have examined the patterns of gene expression within the different cellular compartments of the tumour. To achieve this goal, we have combined laser capture microdissection with computational analyses to reveal groups of genes that are associated with either epithelial tumour cells (clusters and palisading epithelium), glial tissue or immune infiltrate. We use these human ACP molecular signatures and RNA-Seq data from two ACP mouse models to reveal that cell clusters are molecularly analogous to the enamel knot, a critical signalling centre controlling normal tooth morphogenesis. Supporting this finding, we show that human cluster cells express high levels of several members of the FGF, TGFB and BMP families of secreted factors, which signal to neighbouring cells as evidenced by immunostaining against the phosphorylated proteins pERK1/2, pSMAD3 and pSMAD1/5/9 in both human and mouse ACP. We reveal that inhibiting the MAPK/ERK pathway with trametinib, a clinically approved MEK inhibitor, results in reduced proliferation and increased apoptosis in explant cultures of human and mouse ACP. Finally, we analyse a prominent molecular signature in the glial reactive tissue to characterise the inflammatory microenvironment and uncover the activation of inflammasomes in human ACP. We validate these results by immunostaining against immune cell markers, cytokine ELISA and proteome analysis in both solid tumour and cystic fluid from ACP patients. Our data support a new molecular paradigm for understanding ACP tumorigenesis as an aberrant mimic of natural tooth development and opens new therapeutic opportunities by revealing the activation of the MAPK/ERK and inflammasome pathways in human ACP.


Subject(s)
Craniopharyngioma/metabolism , MAP Kinase Signaling System , Pituitary Neoplasms/metabolism , Transcriptome , Tumor Microenvironment/physiology , Animals , Computational Biology , Craniopharyngioma/pathology , Craniopharyngioma/therapy , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation/metabolism , Inflammation/therapy , Laser Capture Microdissection , Mice , Neuroglia/metabolism , Odontogenesis/physiology , Pituitary Gland/embryology , Pituitary Gland/pathology , Pituitary Neoplasms/pathology , Pituitary Neoplasms/therapy , Sequence Analysis, RNA , Tissue Culture Techniques
11.
Nat Commun ; 8: 14279, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28176794

ABSTRACT

By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2-DNAAF4-HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Axonemal Dyneins/metabolism , Genes, X-Linked/genetics , Genetic Diseases, X-Linked/genetics , Kartagener Syndrome/genetics , Microtubule Proteins/genetics , Molecular Chaperones/genetics , Adolescent , Adult , Animals , Apoptosis Regulatory Proteins/metabolism , Axoneme/pathology , Child , Child, Preschool , Cilia/pathology , Cilia/ultrastructure , Cytoplasm/pathology , Disease Models, Animal , Female , Genetic Diseases, X-Linked/pathology , HEK293 Cells , HSP90 Heat-Shock Proteins/metabolism , Humans , Infant, Newborn , Intracellular Signaling Peptides and Proteins , Kartagener Syndrome/pathology , Male , Microscopy, Electron, Transmission , Pedigree , Phylogeny , Point Mutation , Protein Folding , Sequence Alignment , Sequence Deletion , Sperm Motility/genetics , Exome Sequencing , Zebrafish
12.
Orphanet J Rare Dis ; 12(1): 24, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28173822

ABSTRACT

BACKGROUND: We describe molecular diagnosis in a complex consanguineous family: four offspring presented with combinations of three distinctive phenotypes; non-syndromic hearing loss (NSHL), an unusual skeletal phenotype comprising multiple fractures, cranial abnormalities and diaphyseal expansion, and significant developmental delay with microcephaly. We performed Chromosomal Microarray Analysis on the offspring with either the skeletal or developmental delay phenotypes, and linkage analysis and whole exome sequencing (WES) on all four children, parents and maternal aunt. RESULTS: Chromosomal microarray and FISH analysis identified a de novo unbalanced translocation as a cause of the microcephaly and severe developmental delay. WES identified a NSHL-causing splice variant in an autosomal recessive deafness gene PDZD7 which resided in a linkage region and affected three of the children. In the two children diagnosed with an unusual skeletal phenotype, WES eventually disclosed a heterozygous COL1A1 variant which affects C-propetide cleavage site of COL1. The variant was inherited from an apparently unaffected mosaic father in an autosomal dominant fashion. After the discovery of the COL1A1 variant, the skeletal phenotype was diagnosed as a high bone mass form of osteogenesis imperfecta. CONCLUSIONS: Next generation sequencing offers an unbiased approach to molecular genetic diagnosis in highly heterogeneous and poorly characterised disorders and enables early diagnosis as well as detection of mosaicism.


Subject(s)
Genomics , Hearing Loss/genetics , Rare Diseases/genetics , Child, Preschool , Consanguinity , Developmental Disabilities , Gene Expression Regulation , Humans , Mutation , Siblings , Exome Sequencing
13.
Am J Hum Genet ; 100(2): 281-296, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28132690

ABSTRACT

EXTL3 regulates the biosynthesis of heparan sulfate (HS), important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs). By whole-exome sequencing, we identified homozygous missense mutations c.1382C>T, c.1537C>T, c.1970A>G, and c.2008T>G in EXTL3 in nine affected individuals from five unrelated families. Notably, we found the identical homozygous missense mutation c.1382C>T (p.Pro461Leu) in four affected individuals from two unrelated families. Affected individuals presented with variable skeletal abnormalities and neurodevelopmental defects. Severe combined immunodeficiency (SCID) with a complete absence of T cells was observed in three families. EXTL3 was most abundant in hematopoietic stem cells and early progenitor T cells, which is in line with a SCID phenotype at the level of early T cell development in the thymus. To provide further support for the hypothesis that mutations in EXTL3 cause a neuro-immuno-skeletal dysplasia syndrome, and to gain insight into the pathogenesis of the disorder, we analyzed the localization of EXTL3 in fibroblasts derived from affected individuals and determined glycosaminoglycan concentrations in these cells as well as in urine and blood. We observed abnormal glycosaminoglycan concentrations and increased concentrations of the non-sulfated chondroitin disaccharide D0a0 and the disaccharide D0a4 in serum and urine of all analyzed affected individuals. In summary, we show that biallelic mutations in EXTL3 disturb glycosaminoglycan synthesis and thus lead to a recognizable syndrome characterized by variable expression of skeletal, neurological, and immunological abnormalities.


Subject(s)
Musculoskeletal Abnormalities/genetics , N-Acetylglucosaminyltransferases/genetics , Osteochondrodysplasias/genetics , Alleles , Cell Line , Cell Line, Tumor , Chondroitin/blood , Chondroitin/urine , DNA Copy Number Variations , Genome-Wide Association Study , Glycosaminoglycans/metabolism , Humans , Musculoskeletal Abnormalities/diagnosis , Mutation, Missense , Osteochondrodysplasias/diagnosis , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics
14.
Expert Rev Mol Diagn ; 16(10): 1073-1082, 2016 10.
Article in English | MEDLINE | ID: mdl-27560481

ABSTRACT

INTRODUCTION: Rare pediatric diseases are clinically severe with high rates of mortality and morbidity. This paper outlines how next-generation sequencing (NGS) can be used to greatly advance identification of the underlying genetic causes. Areas covered: This manuscript is a blend of evidence obtained from literature searches from PubMed and rare disease related websites, laboratory experience and the author's opinions. The paper covers the current state of the field and identifies where the challenges lie and how they are being overcome, using up-to-date references. Expert commentary: The field of NGS is still relatively new but it has already transformed the field of rare disease research. Technological advances in instrumentation, computational hardware and software have resulted in the identification of many causative genes, but as sequencing moves into population-scale initiatives standardisation and data sharing is going to be of paramount importance to ensure we derive the maximum benefit for patients.


Subject(s)
Genomics , High-Throughput Nucleotide Sequencing , Rare Diseases/diagnosis , Rare Diseases/genetics , Sequence Analysis, DNA , Adolescent , Child , Child, Preschool , Computational Biology/methods , Exome , Factor Analysis, Statistical , Genetic Association Studies , Genetic Predisposition to Disease , Genome, Human , Genomics/methods , Humans , Infant , Infant, Newborn , Mutation , Pedigree , Population Surveillance/methods , Precision Medicine/methods
15.
Psychiatr Genet ; 26(2): 60-5, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26555645

ABSTRACT

OBJECTIVES: There is a growing body of evidence suggesting a shared genetic susceptibility between many neuropsychiatric disorders, including schizophrenia, autism, intellectual disability (ID) and epilepsy. The sodium channel, voltage-gated type II α subunit gene SCN2A has been shown to exhibit loss-of-function (LoF) mutations in individuals with seizure disorders, ID, autism and schizophrenia. The role of LoF mutations in schizophrenia is still uncertain with only one such mutation identified to date. METHODS: To seek additional evidence for a role for LoF mutations at SCN2A in schizophrenia we performed mutation screening of the entire coding sequence in 980 schizophrenia cases. Given an absence of LoF mutations in a public exome cohort (ESP6500, N=6503), we did not additionally sequence controls. RESULTS: We identified a novel, nonsense (i.e. stop codon) mutation in one case (E169X) that is absent in 4300 European-American and 2203 African-American individuals from the NHLBI Exome Sequencing Project. This is the second LoF allele identified in a schizophrenia case to date. We also show a novel, missense variant, V1282F, that occurs in two cases and is absent in the control dataset. CONCLUSION: We argue that very rare, LoF mutations at SCN2A act in a moderately penetrant manner to increase the risk of developing several neuropsychiatric disorders including seizure disorders, ID, autism and schizophrenia.


Subject(s)
NAV1.2 Voltage-Gated Sodium Channel/genetics , Schizophrenia/genetics , DNA Mutational Analysis , Female , Genetic Predisposition to Disease , Humans , Male , Mutation, Missense , United Kingdom
16.
Eur J Hum Genet ; 24(1): 135-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26059840

ABSTRACT

Primary ovarian insufficiency (POI) is a distressing cause of infertility in young women. POI is heterogeneous with only a few causative genes having been discovered so far. Our objective was to determine the genetic cause of POI in a consanguineous Lebanese family with two affected sisters presenting with primary amenorrhoea and an absence of any pubertal development. Multipoint parametric linkage analysis was performed. Whole-exome sequencing was done on the proband. Linkage analysis identified a locus on chromosome 7 where exome sequencing successfully identified a homozygous two base pair duplication (c.1947_48dupCT), leading to a truncated protein p.(Y650Sfs*22) in the STAG3 gene, confirming it as the cause of POI in this family. Exome sequencing combined with linkage analyses offers a powerful tool to efficiently find novel genetic causes of rare, heterogeneous disorders, even in small single families. This is only the second report of a STAG3 variant; the first STAG3 variant was recently described in a phenotypically similar family with extreme POI. Identification of an additional family highlights the importance of STAG3 in POI pathogenesis and suggests it should be evaluated in families affected with POI.


Subject(s)
Amenorrhea/genetics , Chromosomes, Human, Pair 7 , Exome , Mutation , Nuclear Proteins/genetics , Primary Ovarian Insufficiency/genetics , Adolescent , Amenorrhea/diagnosis , Amenorrhea/pathology , Base Sequence , Cell Cycle Proteins , Child , Consanguinity , Female , Gene Expression , Genetic Linkage , Homozygote , Humans , Molecular Sequence Data , Pedigree , Primary Ovarian Insufficiency/diagnosis , Primary Ovarian Insufficiency/pathology , Sequence Analysis, DNA , Siblings
17.
Eur J Hum Genet ; 24(2): 298-301, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26059842

ABSTRACT

The success of whole-exome sequencing to identify mutations causing single-gene disorders has been well documented. In contrast whole-exome sequencing has so far had limited success in the identification of variants causing more complex phenotypes that seem unlikely to be due to the disruption of a single gene. We describe a family where two male offspring of healthy first cousin parents present a complex phenotype consisting of peripheral neuropathy and bronchiectasis that has not been described previously in the literature. Due to the fact that both children had the same problems in the context of parental consanguinity we hypothesised illness resulted from either X-linked or autosomal recessive inheritance. Through the use of whole-exome sequencing we were able to simplify this complex phenotype and identified a causative mutation (p.R1070*) in the gene periaxin (PRX), a gene previously shown to cause peripheral neuropathy (Dejerine-Sottas syndrome) when this mutation is present. For the bronchiectasis phenotype we were unable to identify a causal single mutation or compound heterozygote, reflecting the heterogeneous nature of this phenotype. In conclusion, in this study we show that whole-exome sequencing has the power to disentangle complex phenotypes through the identification of causative genetic mutations for distinct clinical disorders that were previously masked.


Subject(s)
Exome/genetics , Hereditary Sensory and Motor Neuropathy/genetics , Membrane Proteins/genetics , Peripheral Nervous System Diseases/genetics , Female , Hereditary Sensory and Motor Neuropathy/pathology , Heterozygote , Humans , Male , Mutation/genetics , Pedigree , Peripheral Nervous System Diseases/pathology , Phenotype , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
18.
Nature ; 506(7487): 179-84, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24463507

ABSTRACT

Inherited alleles account for most of the genetic risk for schizophrenia. However, new (de novo) mutations, in the form of large chromosomal copy number changes, occur in a small fraction of cases and disproportionally disrupt genes encoding postsynaptic proteins. Here we show that small de novo mutations, affecting one or a few nucleotides, are overrepresented among glutamatergic postsynaptic proteins comprising activity-regulated cytoskeleton-associated protein (ARC) and N-methyl-d-aspartate receptor (NMDAR) complexes. Mutations are additionally enriched in proteins that interact with these complexes to modulate synaptic strength, namely proteins regulating actin filament dynamics and those whose messenger RNAs are targets of fragile X mental retardation protein (FMRP). Genes affected by mutations in schizophrenia overlap those mutated in autism and intellectual disability, as do mutation-enriched synaptic pathways. Aligning our findings with a parallel case-control study, we demonstrate reproducible insights into aetiological mechanisms for schizophrenia and reveal pathophysiology shared with other neurodevelopmental disorders.


Subject(s)
Models, Neurological , Mutation/genetics , Nerve Net/metabolism , Neural Pathways/metabolism , Schizophrenia/genetics , Schizophrenia/physiopathology , Synapses/metabolism , Child Development Disorders, Pervasive/genetics , Cytoskeletal Proteins/metabolism , Exome/genetics , Fragile X Mental Retardation Protein/metabolism , Humans , Intellectual Disability/genetics , Mutation Rate , Nerve Net/physiopathology , Nerve Tissue Proteins/metabolism , Neural Pathways/physiopathology , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/metabolism , Substrate Specificity
19.
Am J Med Genet B Neuropsychiatr Genet ; 162B(2): 177-82, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23335482

ABSTRACT

Deletion of chr22q11 gives rise to velo-cardio facial syndrome (VCFS) and increases schizophrenia risk. The source of this elevated risk although unknown could result from stochastic, environmental, or genetic factors, the latter encompassing a range of complexity from polygenic mechanisms to "second-hit" mutations. For this study we tested the two-hit hypothesis where additional risk is conferred through a second CNV. We identified large (>100 kb) CNVs in 48 VCFS cases (23 with psychosis--25 without) and show in the psychotic VCFS group there is a significant (P = 0.02) increase in the average size of CNVs (354-227 kb). To identify second-hit loci we focused on individuals possessing gene-centric CNVs and through literature mining identified 4 (31%) psychotic VCFS individuals (n = 13) that overlapped loci previously implicated in neuropsychiatric disorders compared to 1 (10%) from the non-psychotic VCFS individuals (n = 10). For replication 17 VCFS patients with schizophrenia from the molecular genetics of schizophrenia dataset were used to identify further CNVs. Thirteen individuals possessing gene-centric CNVs were identified including 3 (23%) individuals possessing a potential second-hit, taking the overall total in the psychotic VCFS group (n = 26) to 7 (27%) potential second-hit loci. Notably a deletion in a psychotic VCFS patient at 2q23.1 hit the gene MBD5 which when deleted gives rise to intellectual disability, epilepsy, and autistic features. Through this study we potentially extend this phenotypic spectrum to include schizophrenia. Our results suggest the two-hit hypothesis may be relevant to a proportion of VCFS patients with psychosis but sample sizes are small and further studies warranted.


Subject(s)
DiGeorge Syndrome/complications , DiGeorge Syndrome/genetics , Models, Genetic , Schizophrenia/complications , Schizophrenia/genetics , DNA Copy Number Variations/genetics , Genetic Predisposition to Disease , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...