Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-30908207

ABSTRACT

This paper describes the development of a miniaturized 15-MHz side-looking phased-array transducer catheter. The array features a 2-2 linear composite with 64 piezoelectric elements mechanically diced into a piece of PMN-30%PT single crystal and separated by non-conductive epoxy kerfs at a 50-µm pitch, yielding a total active aperture of 3.2 mm in the azimuth direction and 1.8 mm in the elevation direction, with an elevation natural focal depth of 8.1 mm. The array includes non-conductive epoxy backing and two front matching layers. A custom flexible circuit connects the array piezoelectric elements to a bundle of 64 individual 48-AWG micro-coaxial cables enclosed within a 1.5-m long 10F catheter. Performance characterization was evaluated via finite element analysis simulations and afterwards compared against obtained measurement results, which showed an average center frequency of 17.7 MHz, an average bandwidth of 52.2% at -6 dB, and crosstalk less than -30 dB. Imaging of a tungsten fine-wire phantom resulted in axial and lateral spatial resolutions of approximately 90 µm and 420 ìm, respectively. The imaging capability was further evaluated with colorectal tissue-mimicking phantoms, demonstrating the potential suitability of the proposed phased-array transducer for the intraoperative assessment of surgical margins during minimally invasive colorectal surgery procedures.

2.
Appl Phys Lett ; 107(12): 123505, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26445518

ABSTRACT

Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its -6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers.

3.
J Med Imaging (Bellingham) ; 2(2): 027001, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26158118

ABSTRACT

A dual-element needle transducer for intravascular ultrasound imaging has been developed. A low-frequency element and a high-frequency element were integrated into one device to obtain images which conveyed both low- and high-frequency information from a single scan. The low-frequency element with a center frequency of 48 MHz was fabricated from the single crystal form of lead magnesium niobate-lead titanate solid solution with two matching layers (MLs) and the high frequency element with a center frequency of 152 MHz was fabricated from lithium niobate with one ML. The measured axial and lateral resolutions were 27 and [Formula: see text], respectively, for the low-frequency element, and 14 and [Formula: see text], respectively, for the high-frequency element. The performance of the dual-element needle transducer was validated by imaging a tissue-mimicking phantom with lesion-mimicking area, and ex vivo rabbit aortas in water and rabbit whole blood. The results suggest that a low-frequency element effectively provides depth resolved images of the whole vessel and its adjacent tissue, and a high-frequency element visualizes detailed structure near the surface of the lumen wall in the presence of blood within the lumen. The advantages of a dual-element approach for intravascular imaging are also discussed.

4.
Article in English | MEDLINE | ID: mdl-21989884

ABSTRACT

This paper describes the development of a high-frequency 256-element linear ultrasonic array utilizing an interdigitally bonded (IB) piezo-composite. Several IB composites were fabricated with different commercial and experimental piezoelectric ceramics and evaluated to determine a suitable formulation for use in high-frequency linear arrays. It was found that the fabricated fine-scale 2-2 IB composites outperformed 1-3 IB composites with identical pillar- and kerf-widths. This result was not expected and lead to the conclusion that dicing damage was likely the cause of the discrepancy. Ultimately, a 2-2 composite fabricated using a fine-grain piezoelectric ceramic was chosen for the array. The composite was manufactured using one IB operation in the azimuth direction to produce approximately 19-µm-wide pillars separated by 6-µm-wide kerfs. The array had a 50 µm (one wavelength in water) azimuth pitch, two matching layers, and 2 mm elevation length focused to 7.3 mm using a polymethylpentene (TPX) lens. The measured pulse-echo center frequency for a representative array element was 28 MHz and -6-dB bandwidth was 61%. The measured single-element transmit -6-dB directivity was estimated to be 50°. The measured insertion loss was 19 dB after compensating for the effects of attenuation and diffraction in the water bath. A fine-wire phantom was used to assess the lateral and axial resolution of the array when paired with a prototype system utilizing a 64-channel analog beamformer. The -6-dB lateral and axial resolutions were estimated to be 125 and 68 µm, respectively. An anechoic cyst phantom was also imaged to determine the minimum detectable spherical inclusion, and thus the 3-D resolution of the array and beamformer. The minimum anechoic cyst detected was approximately 300 µm in diameter.


Subject(s)
Ultrasonography/instrumentation , Animals , Cattle , Cysts/diagnostic imaging , Equipment Design , Eye/diagnostic imaging , Models, Biological , Phantoms, Imaging , Transducers , Ultrasonography/methods
5.
Article in English | MEDLINE | ID: mdl-21244988

ABSTRACT

This paper reports the design, fabrication, and characterization of a 1-3 composite annular-array transducer. An interdigital bonded (IB) 1-3 composite was prepared using two IB operations on a fine-grain piezoelectric ceramic. The final composite had 19-µm-wide posts separated by 6-µm-wide polymer kerfs. A novel method to remove metal electrodes from polymer portions of the 1-3 composite was established to eliminate the need for patterning and aligning the electrode on the composite to the electrodes on a flexible circuit. Unloaded epoxy was used for both the matching and backing layers and a flexible circuit was used for interconnect. A prototype array was successfully fabricated and tested. The results were in reasonable agreement with those predicted by a circuit-analogous model. The average center frequency estimated from the measured pulse-echo responses of array elements was 33.5 MHz and the -6-dB fractional bandwidth was 57%. The average insertion loss recorded was 14.3 dB, and the maximum crosstalk between the nearest-neighbor elements was less than -37 dB. Images of a wire phantom and excised porcine eye were obtained to show the capabilities of the array for high-frequency ultrasound imaging.


Subject(s)
Lead/chemistry , Titanium/chemistry , Transducers , Ultrasonography/instrumentation , Zirconium/chemistry , Animals , Ceramics/chemistry , Electric Impedance , Equipment Design , Eye/diagnostic imaging , Phantoms, Imaging , Swine
6.
Article in English | MEDLINE | ID: mdl-16471449

ABSTRACT

This paper discusses the development of a 64-element 35-MHz composite ultrasonic array. This array was designed primarily for ocular imaging applications, and features 2-2 composite elements mechanically diced out of a fine-grain high-density Navy Type VI ceramic. Array elements were spaced at a 50-micron pitch, interconnected via a custom flexible circuit and matched to the 50-ohm system electronics via a 75-ohm transmission line coaxial cable. Elevation focusing was achieved using a cylindrically shaped epoxy lens. One functional 64-element array was fabricated and tested. Bandwidths averaging 55%, 23-dB insertion loss, and crosstalk less than -24 dB were measured. An image of a tungsten wire target phantom was acquired using a synthetic aperture reconstruction algorithm. The results from this imaging test demonstrate resolution exceeding 50 microm axially and 100 microm laterally.


Subject(s)
Ceramics , Computer-Aided Design , Image Enhancement/instrumentation , Microelectrodes , Models, Theoretical , Transducers , Ultrasonography/instrumentation , Computer Simulation , Electrochemistry/instrumentation , Equipment Design , Equipment Failure Analysis , Miniaturization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...