Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 9(6): 1333-51, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25500507

ABSTRACT

Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (a(w)) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650-0.605 a(w). Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 a(w)). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 aw for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (∼0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 a(w) for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life.


Subject(s)
Aspergillus/metabolism , Bacteria/metabolism , Halobacterium/metabolism , Archaea/metabolism , Artifacts , Ascomycota/metabolism , Carbohydrates/chemistry , Fungi/metabolism , Hydrogen-Ion Concentration , Sodium Chloride/chemistry , Staphylococcus aureus/metabolism , Temperature , Water/physiology , Water Microbiology
2.
Proc Natl Acad Sci U S A ; 107(17): 7835-40, 2010 Apr 27.
Article in English | MEDLINE | ID: mdl-20404182

ABSTRACT

Microbial cells, and ultimately the Earth's biosphere, function within a narrow range of physicochemical conditions. For the majority of ecosystems, productivity is cold-limited, and it is microbes that represent the failure point. This study was carried out to determine if naturally occurring solutes can extend the temperature windows for activity of microorganisms. We found that substances known to disorder cellular macromolecules (chaotropes) did expand microbial growth windows, fungi preferentially accumulated chaotropic metabolites at low temperature, and chemical activities of solutes determined microbial survival at extremes of temperature as well as pressure. This information can enhance the precision of models used to predict if extraterrestrial and other hostile environments are able to support life; furthermore, chaotropes may be used to extend the growth windows for key microbes, such as saprotrophs, in cold ecosystems and man-made biomes.


Subject(s)
Adaptation, Biological/physiology , Ecosystem , Fungi/growth & development , Models, Biological , Temperature , Cryoprotective Agents/metabolism , Cryoprotective Agents/pharmacology , Fungi/drug effects , Glucose/metabolism , Glucose/pharmacology , Glycerol/metabolism , Glycerol/pharmacology , Pressure , Sucrose/metabolism , Sucrose/pharmacology
3.
Environ Microbiol ; 11(12): 3292-308, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19840102

ABSTRACT

Environments that are hostile to life are characterized by reduced microbial activity which results in poor soil- and plant-health, low biomass and biodiversity, and feeble ecosystem development. Whereas the functional biosphere may primarily be constrained by water activity (a(w)) the mechanism(s) by which this occurs have not been fully elucidated. Remarkably we found that, for diverse species of xerophilic fungi at a(w) values of

Subject(s)
Environment , Fungi/classification , Biodiversity , Dehydration , Environmental Monitoring , Fungi/isolation & purification , Fungi/metabolism , Macromolecular Substances/metabolism , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...