Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anat Rec (Hoboken) ; 305(7): 1787-1803, 2022 07.
Article in English | MEDLINE | ID: mdl-34708582

ABSTRACT

Modes of teleost tooth replacement and attachment have historically been described using discrete classification systems that categorize major patterns across taxa. While useful, these discrete classification schemes understate teleost tooth diversity. The "unattached" dentition of salariin combtooth blennies (Blenniiformes: Blenniidae: Salariini) is frequently overlooked due to its perceived complexity, so we examined the Pacific Leaping Blenny, Alticus arnoldorum, to describe this complex morphology. Using a range of methods including histology, SEM, microCT scanning, and clearing and staining, we establish a descriptive model of tooth replacement for A. arnoldorum. We then use our descriptive model of tooth replacement to propose a hypothesis of tooth function in salariin blennies. Our results show that A. arnoldorum exhibits grouped, extraosseous replacement of feeding teeth upon a discontinuous, permanent dental lamina. We also find that tooth replacement occurs within lip tissue that is laterally displaced from the distal margins of the jaw bones, a process previously undocumented in teleost fish. Feeding teeth attach to the dentigerous bone via a primary attachment mode consisting of a continuous collagen band at the posterior base of the teeth, and a secondary attachment mode consisting of epithelial cells. Alticus arnoldorum presents novel modes of tooth replacement and attachment that challenge historical classification modes of teleost dentition. Our descriptive tooth replacement model also provides a reliable framework to propose hypotheses of tooth function that can be applied in future comparative studies on salariin blennies and other long-toothed teleosts to further elucidate the functional role of long-toothed fishes in aquatic ecosystems.


Subject(s)
Perciformes , Tooth , Animals , Dentition , Ecosystem , Fishes/anatomy & histology , Odontogenesis , Perciformes/anatomy & histology , Tooth/anatomy & histology
2.
Sci Rep ; 11(1): 1985, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479424

ABSTRACT

Cyprinid herpesvirus-3 (CyHV-3, syn. koi herpesvirus) is an important pathogen worldwide and a common cause of mass mortality events of wild common carp (Cyprinus carpio) in North America, however, reference strains and genomes obtained from wild carp are not available. Additionally, it is unclear if fishes in North America are susceptible to CyHV-3 infection due to incomplete susceptibility testing. Here we present the first North American type strain and whole-genome sequence of CyHV-3 isolated from wild carp collected from a lake with a history and recent incidence of carp mortality. Additionally, the strain was used in an in-vivo infection model to test the susceptibility of a common native minnow (Pimephales promelas) and goldfish (Carrasius auratus) which is invasive in North America. Detection of CyHV-3 DNA was confirmed in the tissues of a single fathead minnow but the same tissues were negative for CyHV-3 mRNA and samples from exposed fathead minnows were negative on cell culture. There was no detection of CyHV-3 DNA or mRNA in goldfish throughout the experiment. CyHV-3 DNA in carp tissues was reproducibly accompanied by the detection of CyHV-3 mRNA and isolation on cell culture. Additionally, environmental CyHV-3 DNA was detected on all tank filters during the study. These findings suggest that fathead minnows and goldfish are not susceptible to CyHV-3 infection and that detection of CyHV-3 DNA alone in host susceptibility trials should be interpreted with caution.


Subject(s)
Carps/virology , Goldfish/virology , Herpesviridae/pathogenicity , Animals , Carps/genetics , Disease Susceptibility , Fish Diseases/genetics , Fish Diseases/virology , Goldfish/genetics , Herpesviridae/genetics , Herpesviridae Infections/genetics , Herpesviridae Infections/virology , North America
3.
Integr Comp Biol ; 59(3): 696-704, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31199432

ABSTRACT

Coral reefs are complex marine habitats that have been hypothesized to facilitate functional specialization and increased rates of functional and morphological evolution. Wrasses (Labridae: Percomorpha) in particular, have diversified extensively in these coral reef environments and have evolved adaptations to further exploit reef-specific resources. Prior studies have found that reef-dwelling wrasses exhibit higher rates of functional evolution, leading to higher functional variation than in non-reef dwelling wrasses. Here, we examine this hypothesis in the lower pharyngeal tooth plate of 134 species of reef and non-reef-associated labrid fishes using high-resolution morphological data in the form of micro-computed tomography scans and employing three-dimensional geometric morphometrics to quantify shape differences. We find that reef-dwelling wrasses do not differ from non-reef-associated wrasses in morphological disparity or rates of shape evolution. However, we find that some reef-associated species (e.g., parrotfishes and tubelips) exhibit elevated rates of pharyngeal jaw shape evolution and have colonized unique regions of morphospace. These results suggest that while coral reef association may provide the opportunity for specialization and morphological diversification, species must still be able to capitalize on the ecological opportunities to invade novel niche space, and that these novel invasions may prompt rapid rates of morphological evolution in the associated traits that allow them to capitalize on new resources.


Subject(s)
Biological Evolution , Coral Reefs , Fishes/anatomy & histology , Jaw/physiology , Animals , Biomechanical Phenomena , Fishes/physiology , Imaging, Three-Dimensional , Perciformes/anatomy & histology , Phylogeny , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...