Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Nat Commun ; 14(1): 2395, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37100828

ABSTRACT

Fractures are integral to the hydrology and geochemistry of watersheds, but our understanding of fracture dynamics is very limited because of the challenge of monitoring the subsurface. Here we provide evidence that long-term, high-frequency measurements of the river concentration of the ultra-trace element thorium (Th) can provide a signature of bedrock fracture processes spanning neighboring watersheds in Colorado. River Th concentrations show abrupt (subdaily) excursions and biexponential decay with approximately 1-day and 1-week time constants, concentration patterns that are distinct from all other solutes except beryllium and arsenic. The patterns are uncorrelated with daily precipitation records or seasonal trends in atmospheric deposition. Groundwater Th analyses are consistent with bedrock release and dilution upon mixing with river water. Most Th excursions have no seismic signatures that are detectable 50 km from the site, suggesting the Th concentrations can reveal aseismic fracture or fault events. We find, however, a weak statistical correlation between Th and seismic motion caused by distant earthquakes, possibly the first chemical signature of dynamic earthquake triggering, a phenomenon previously identified only through geophysical methods.

2.
Nature ; 610(7933): 731-736, 2022 10.
Article in English | MEDLINE | ID: mdl-36261517

ABSTRACT

Anaerobic methane oxidation exerts a key control on greenhouse gas emissions1, yet factors that modulate the activity of microorganisms performing this function remain poorly understood. Here we discovered extraordinarily large, diverse DNA sequences that primarily encode hypothetical proteins through studying groundwater, sediments and wetland soil where methane production and oxidation occur. Four curated, complete genomes are linear, up to approximately 1 Mb in length and share genome organization, including replichore structure, long inverted terminal repeats and genome-wide unique perfect tandem direct repeats that are intergenic or generate amino acid repeats. We infer that these are highly divergent archaeal extrachromosomal elements with a distinct evolutionary origin. Gene sequence similarity, phylogeny and local divergence of sequence composition indicate that many of their genes were assimilated from methane-oxidizing Methanoperedens archaea. We refer to these elements as 'Borgs'. We identified at least 19 different Borg types coexisting with Methanoperedens spp. in four distinct ecosystems. Borgs provide methane-oxidizing Methanoperedens archaea access to genes encoding proteins involved in redox reactions and energy conservation (for example, clusters of multihaem cytochromes and methyl coenzyme M reductase). These data suggest that Borgs might have previously unrecognized roles in the metabolism of this group of archaea, which are known to modulate greenhouse gas emissions, but further studies are now needed to establish their functional relevance.


Subject(s)
Methanosarcinales , Amino Acids/genetics , Anaerobiosis , Cytochromes/genetics , Cytochromes/metabolism , Ecosystem , Geologic Sediments , Greenhouse Gases/metabolism , Methane/metabolism , Methanosarcinales/classification , Methanosarcinales/genetics , Methanosarcinales/metabolism , Oxidation-Reduction , Phylogeny , Soil
3.
Water Res X ; 15: 100144, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35542761

ABSTRACT

Changes in climate, season, and vegetation can alter organic export from watersheds. While an accepted tradeoff to protect public health, disinfection processes during drinking water treatment can adversely react with organic compounds to form disinfection byproducts (DBPs). By extension, DBP monitoring can yield insights into hydrobiogeochemical dynamics within watersheds and their implications for water resource management. In this study, we analyzed temporal trends from a water treatment facility that sources water from Coal Creek in Crested Butte, Colorado. These trends revealed a long-term increase in haloacetic acid and trihalomethane formation over the period of 2005-2020. Disproportionate export of dissolved organic carbon and formation of DBPs that exceeded maximum contaminant levels were consistently recorded in association with late spring freshet. Synoptic sampling of the creek in 2020 and 2021 identified a biogeochemical hotspot for organic carbon export in the upper domain of the watershed that contained a prominent fulvic acid-like fluorescent signature. DBP formation potential analyses from this domain yielded similar ratios of regulated DBP classes to those formed at the drinking water facility. Spectrometric qualitative analyses of pre and post-reacted waters with hypochlorite indicated lignin-like and condensed hydrocarbon-like molecules were the major reactive chemical classes during chlorine-based disinfection. This study demonstrates how drinking water quality archives combined with synoptic sampling and targeted analyses can be used to identify and understand export control points for dissolved organic matter. This approach could be applied to identify and characterize analogous watersheds where seasonal or climate-associated organic matter export challenge water treatment disinfection and by extension inform watershed management and drinking water treatment.

4.
ISME J ; 16(5): 1348-1362, 2022 05.
Article in English | MEDLINE | ID: mdl-34987183

ABSTRACT

Copper membrane monooxygenases (CuMMOs) play critical roles in the global carbon and nitrogen cycles. Organisms harboring these enzymes perform the first, and rate limiting, step in aerobic oxidation of ammonia, methane, or other simple hydrocarbons. Within archaea, only organisms in the order Nitrososphaerales (Thaumarchaeota) encode CuMMOs, which function exclusively as ammonia monooxygenases. From grassland and hillslope soils and aquifer sediments, we identified 20 genomes from distinct archaeal species encoding divergent CuMMO sequences. These archaea are phylogenetically clustered in a previously unnamed Thermoplasmatota order, herein named the Ca. Angelarchaeales. The CuMMO proteins in Ca. Angelarchaeales are more similar in structure to those in Nitrososphaerales than those of bacteria, and contain all functional residues required for general monooxygenase activity. Ca. Angelarchaeales genomes are significantly enriched in blue copper proteins (BCPs) relative to sibling lineages, including plastocyanin-like electron carriers and divergent nitrite reductase-like (nirK) 2-domain cupredoxin proteins co-located with electron transport machinery. Ca. Angelarchaeales also encode significant capacity for peptide/amino acid uptake and degradation and share numerous electron transport mechanisms with the Nitrososphaerales. Ca. Angelarchaeales are detected at high relative abundance in some of the environments where their genomes originated from. While the exact substrate specificities of the novel CuMMOs identified here have yet to be determined, activity on ammonia is possible given their metabolic and ecological context. The identification of an archaeal CuMMO outside of the Nitrososphaerales significantly expands the known diversity of CuMMO enzymes in archaea and suggests previously unaccounted organisms contribute to critical global nitrogen and/or carbon cycling functions.


Subject(s)
Archaea , Euryarchaeota , Ammonia/metabolism , Archaea/metabolism , Carbon/metabolism , Copper/metabolism , Euryarchaeota/metabolism , Mixed Function Oxygenases/genetics , Phylogeny , Soil
5.
Sci Rep ; 12(1): 712, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35027569

ABSTRACT

The traditionally held assumption that photo-dependent processes are the predominant source of H2O2 in natural waters has been recently questioned by an increrasing body of evidence showing the ubiquitiousness of H2O2 in dark water bodies and in groundwater. In this study, we conducted field measurement of H2O2 in an intra-meander hyporheic zone and in surface water at East River, CO. On-site detection using a sensitive chemiluminescence method suggests H2O2 concentrations in groundwater ranging from 6 nM (at the most reduced region) to ~ 80 nM (in a locally oxygen-rich area) along the intra-meander transect with a maxima of 186 nM detected in the surface water in an early afternoon, lagging the maximum solar irradiance by ∼ 1.5 h. Our results suggest that the dark profile of H2O2 in the hyporheic zone is closely correlated to local redox gradients, indicating that interactions between various redox sensitive elements could play an essential role. Due to its transient nature, the widespread presence of H2O2 in the hyporheic zone indicates the existence of a sustained balance between H2O2 production and consumption, which potentially involves a relatively rapid succession of various biogeochemically important processes (such as organic matter turnover, metal cycling and contaminant mobilization). More importantly, this study confirmed the occurrence of reactive oxygen species at a subsurface redox transition zone and further support our understanding of redox boundaries on reactive oxygen species generation and as key locations of biogeochemical activity.

6.
PeerJ ; 9: e11926, 2021.
Article in English | MEDLINE | ID: mdl-34434657

ABSTRACT

Increased drought and temperatures associated with climate change have implications for ecosystem stress with risk for enhanced carbon release in sensitive biomes. Litter decomposition is a key component of biogeochemical cycling in terrestrial ecosystems, but questions remain regarding the local response of decomposition processes to climate change. This is particularly complex in mountain ecosystems where the variable nature of the slope, aspect, soil type, and snowmelt dynamics play a role. Hence, the goal of this study was to determine the role of elevation, soil type, seasonal shifts in soil moisture, and snowmelt timing on litter decomposition processes. Experimental plots containing replicate deployments of harvested lodgepole and spruce needle litter alongside needle-free controls were established in open meadows at three elevations ranging from 2,800-3,500 m in Crested Butte, Colorado. Soil biogeochemistry variables including gas flux, porewater chemistry, and microbial ecology were monitored over three climatically variable years that shifted from high monsoon rains to drought. Results indicated that elevation and soil type influenced baseline soil biogeochemical indicators; however, needle mass loss and chemical composition were consistent across the 700 m elevation gradient. Rates of gas flux were analogously consistent across a 300 m elevation gradient. The additional variable of early snowmelt by 2-3 weeks had little impact on needle chemistry, microbial composition and gas flux; however, it did result in increased dissolved organic carbon in lodgepole porewater collections suggesting a potential for aqueous export. In contrast to elevation, needle presence and seasonal variability of soil moisture and temperature both played significant roles in soil carbon fluxes. During a pronounced period of lower moisture and higher temperatures, bacterial community diversity increased across elevation with new members supplanting more dominant taxa. Microbial ecological resilience was demonstrated with a return to pre-drought structure and abundance after snowmelt rewetting the following year. These results show similar decomposition processes across a 700 m elevation gradient and reveal the sensitivity but resilience of soil microbial ecology to low moisture conditions.

7.
Microbiome ; 9(1): 121, 2021 05 22.
Article in English | MEDLINE | ID: mdl-34022966

ABSTRACT

BACKGROUND: Biogeochemical exports from watersheds are modulated by the activity of microorganisms that function over micron scales. Here, we tested the hypothesis that meander-bound regions share a core microbiome and exhibit patterns of metabolic potential that broadly predict biogeochemical processes in floodplain soils along a river corridor. RESULTS: We intensively sampled the microbiomes of floodplain soils located in the upper, middle, and lower reaches of the East River, Colorado. Despite the very high microbial diversity and complexity of the soils, we reconstructed 248 quality draft genomes representative of subspecies. Approximately one third of these bacterial subspecies was detected across all three locations at similar abundance levels, and ~ 15% of species were detected in two consecutive years. Within the meander-bound floodplains, we did not detect systematic patterns of gene abundance based on sampling position relative to the river. However, across meanders, we identified a core floodplain microbiome that is enriched in capacities for aerobic respiration, aerobic CO oxidation, and thiosulfate oxidation with the formation of elemental sulfur. Given this, we conducted a transcriptomic analysis of the middle floodplain. In contrast to predictions made based on the prominence of gene inventories, the most highly transcribed genes were relatively rare amoCAB and nxrAB (for nitrification) genes, followed by genes involved in methanol and formate oxidation, and nitrogen and CO2 fixation. Within all three meanders, low soil organic carbon correlated with high activity of genes involved in methanol, formate, sulfide, hydrogen, and ammonia oxidation, nitrite oxidoreduction, and nitrate and nitrite reduction. Overall, the results emphasize the importance of sulfur, one-carbon and nitrogen compound metabolism in soils of the riparian corridor. CONCLUSIONS: The disparity between the scale of a microbial cell and the scale of a watershed currently limits the development of genomically informed predictive models describing watershed biogeochemical function. Meander-bound floodplains appear to serve as scaling motifs that predict aggregate capacities for biogeochemical transformations, providing a foundation for incorporating riparian soil microbiomes in watershed models. Widely represented genetic capacities did not predict in situ activity at one time point, but rather they define a reservoir of biogeochemical potential available as conditions change. Video abstract.


Subject(s)
Microbiota , Soil , Carbon , Microbiota/genetics , Nitrogen , Rivers
8.
PLoS One ; 16(3): e0247907, 2021.
Article in English | MEDLINE | ID: mdl-33760812

ABSTRACT

There is a growing understanding of the role that bedrock weathering can play as a source of nitrogen (N) to soils, groundwater and river systems. The significance is particularly apparent in mountainous environments where weathering fluxes can be large. However, our understanding of the relative contributions of rock-derived, or geogenic, N to the total N supply of mountainous watersheds remains poorly understood. In this study, we develop the High-Altitude Nitrogen Suite of Models (HAN-SoMo), a watershed-scale ensemble of process-based models to quantify the relative sources, transformations, and sinks of geogenic and atmospheric N through a mountain watershed. Our study is based in the East River Watershed (ERW) in the Upper Colorado River Basin. The East River is a near-pristine headwater watershed underlain primarily by an N-rich Mancos Shale bedrock, enabling the timing and magnitude of geogenic and atmospheric contributions to watershed scale dissolved N-exports to be quantified. Several calibration scenarios were developed to explore equifinality using >1600 N concentration measurements from streams, groundwater, and vadose zone samples collected over the course of four years across the watershed. When accounting for recycling of N through plant litter turnover, rock weathering accounts for approximately 12% of the annual dissolved N sources to the watershed in the most probable calibration scenario (0-31% in other scenarios), and 21% (0-44% in other scenarios) when considering only "new" N sources (i.e. geogenic and atmospheric). On an annual scale, instream dissolved N elimination, plant turnover (including cattle grazing) and atmospheric deposition are the most important controls on N cycling.


Subject(s)
Environmental Monitoring , Nitrogen/analysis , Water Pollutants, Chemical/analysis , Colorado
9.
PeerJ ; 8: e9538, 2020.
Article in English | MEDLINE | ID: mdl-32742804

ABSTRACT

This study investigates the isolated decomposition of spruce and lodgepole conifer needles to enhance our understanding of how needle litter impacts near-surface terrestrial biogeochemical processes. Harvested needles were exported to a subalpine meadow to enable a discrete analysis of the decomposition processes over 2 years. Initial chemistry revealed the lodgepole needles to be less recalcitrant with a lower carbon to nitrogen (C:N) ratio. Total C and N fundamentally shifted within needle species over time with decreased C:N ratios for spruce and increased ratios for lodgepole. Differences in chemistry correlated with CO2 production and soil microbial communities. The most pronounced trends were associated with lodgepole needles in comparison to the spruce and needle-free controls. Increased organic carbon and nitrogen concentrations associated with needle presence in soil extractions further corroborate the results with clear biogeochemical signatures in association with needle chemistry. Interestingly, no clear differentiation was observed as a function of bark beetle impacted spruce needles vs those derived from healthy spruce trees despite initial differences in needle chemistry. These results reveal that the inherent chemistry associated with tree species has a greater impact on soil biogeochemical signatures during isolated needle decomposition. By extension, biogeochemical shifts associated with bark beetle infestation are likely driven more by changes such as the cessation of rhizospheric processes than by needle litter decomposition.

10.
Front Microbiol ; 11: 871, 2020.
Article in English | MEDLINE | ID: mdl-32477299

ABSTRACT

Soil microbial biomass can reach its annual maximum pool size beneath the winter snowpack and is known to decline abruptly following snowmelt in seasonally snow-covered ecosystems. Observed differences in winter versus summer microbial taxonomic composition also suggests that phylogenetically conserved traits may permit winter- versus summer-adapted microorganisms to occupy distinct niches. In this study, we sought to identify archaea, bacteria, and fungi that are associated with the soil microbial bloom overwinter and the subsequent biomass collapse following snowmelt at a high-altitude watershed in central Colorado, United States. Archaea, bacteria, and fungi were categorized into three life strategies (Winter-Adapted, Snowmelt-Specialist, Spring-Adapted) based upon changes in abundance during winter, the snowmelt period, and after snowmelt in spring. We calculated indices of phylogenetic relatedness (archaea and bacteria) or assigned functional attributes (fungi) to organisms within life strategies to infer whether phylogenetically conserved traits differentiate Winter-Adapted, Snowmelt-Specialist, and Spring-Adapted groups. We observed that the soil microbial bloom was correlated in time with a pulse of snowmelt infiltration, which commenced 65 days prior to soils becoming snow-free. A pulse of nitrogen (N, as nitrate) occurred after snowmelt, along with a collapse in the microbial biomass pool size, and an increased abundance of nitrifying archaea and bacteria (e.g., Thaumarchaeota, Nitrospirae). Winter- and Spring-Adapted archaea and bacteria were phylogenetically clustered, suggesting that phylogenetically conserved traits allow Winter- and Spring-Adapted archaea and bacteria to occupy distinct niches. In contrast, Snowmelt-Specialist archaea and bacteria were phylogenetically overdispersed, suggesting that the key mechanism(s) of the microbial biomass crash are likely to be density-dependent (e.g., trophic interactions, competitive exclusion) and affect organisms across a broad phylogenetic spectrum. Saprotrophic fungi were the dominant functional group across fungal life strategies, however, ectomycorrhizal fungi experienced a large increase in abundance in spring. If well-coupled plant-mycorrhizal phenology currently buffers ecosystem N losses in spring, then changes in snowmelt timing may alter ecosystem N retention potential. Overall, we observed that snowmelt separates three distinct soil niches that are occupied by ecologically distinct groups of microorganisms. This ecological differentiation is of biogeochemical importance, particularly with respect to the mobilization of nitrogen during winter, before and after snowmelt.

11.
Environ Sci Technol ; 54(8): 4984-4994, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32181661

ABSTRACT

Chemical forms of phosphorus (P) in airborne particulate matter (PM) are poorly known and do not correlate with solubility or extraction measurements commonly used to infer speciation. We used P X-ray absorption near-edge structure (XANES) and 31P nuclear magnetic resonance (NMR) spectroscopies to determine P species in PM collected at four mountain sites (Colorado and California). Organic P species dominated samples from high elevations, with organic P estimated at 65-100% of total P in bulk samples by XANES and 79-88% in extracted fractions (62-84% of total P) by NMR regardless of particle size (≥10 or 1-10 µm). Phosphorus monoester and diester organic species were dominant and present in about equal proportions, with low fractions of inorganic P species. By comparison, PM from low elevation contained mixtures of organic and inorganic P, with organic P estimated at 30-60% of total P. Intercontinental PM transport determined from radiogenic lead (Pb) isotopes varied from 0 to 59% (mean 37%) Asian-sourced Pb at high elevation, whereas stronger regional PM inputs were found at low elevation. Airborne flux of bioavailable P to high-elevation ecosystems may be twice as high as estimated by global models, which will disproportionately affect net primary productivity.


Subject(s)
Particulate Matter/analysis , Phosphorus/analysis , Colorado , Ecosystem , Particle Size
12.
Bio Protoc ; 10(6): e3557, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-33659529

ABSTRACT

Field studies that simulate the effects of climate change are important for a predictive understanding of ecosystem responses to a changing environment. Among many concerns, regional warming can result in advanced timing of spring snowmelt in snowpack dependent ecosystems, which could lead to longer snow-free periods and drier summer soils. Past studies investigating these impacts of climate change have manipulated snowmelt with a variety of techniques that include manual snowpack alteration with a shovel, infrared radiation, black sand and fabric covers. Within these studies however, sufficient documentation of methods is limited, which can make experimental reproduction difficult. Here, we outline a detailed plot-scale protocol that utilizes a permeable black geotextile fabric deployed on top of an isothermal spring snowpack to induce advanced snowmelt. The method offers a reliable and cost-effective approach to induce snowmelt by passively increasing solar radiation absorption at the snow surface. In addition, control configurations with no snowpack manipulation are paired adjacent to the induced snowmelt plot for experimental comparison. Past and ongoing deployments in Colorado subalpine ecosystems indicate that this approach can accelerate snowmelt by 14-23 days, effectively mimicking snowmelt timing at lower elevations. This protocol can be applied to a variety of studies to understand the hydrological, ecological, and geochemical impacts of regional warming in snowpack dependent ecosystems.

13.
Sci Rep ; 9(1): 17198, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748585

ABSTRACT

Although bedrock weathering strongly influences water quality and global carbon and nitrogen budgets, the weathering depths and rates within subsurface are not well understood nor predictable. Determination of both porewater chemistry and subsurface water flow are needed in order to develop more complete understanding and obtain weathering rates. In a long-term field study, we applied a multiphase approach along a mountainous watershed hillslope transect underlain by marine shale. Here we report three findings. First, the deepest extent of the water table determines the weathering front, and the range of annually water table oscillations determines the thickness of the weathering zone. Below the lowest water table, permanently water-saturated bedrock remains reducing, preventing deeper pyrite oxidation. Secondly, carbonate minerals and potentially rock organic matter share the same weathering front depth with pyrite, contrary to models where weathering fronts are stratified. Thirdly, the measurements-based weathering rates from subsurface shale are high, amounting to base cation exports of about 70 kmolc ha-1 y-1, yet consistent with weathering of marine shale. Finally, by integrating geochemical and hydrological data we present a new conceptual model that can be applied in other settings to predict weathering and water quality responses to climate change.

14.
Ecol Evol ; 9(12): 6869-6900, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31380022

ABSTRACT

Watersheds are important suppliers of freshwater for human societies. Within mountainous watersheds, microbial communities impact water chemistry and element fluxes as water from precipitation events discharge through soils and underlying weathered rock, yet there is limited information regarding the structure and function of these communities. Within the East River, CO watershed, we conducted a depth-resolved, hillslope to riparian zone transect study to identify factors that control how microorganisms are distributed and their functions. Metagenomic and geochemical analyses indicate that distance from the East River and proximity to groundwater and underlying weathered shale strongly impact microbial community structure and metabolic potential. Riparian zone microbial communities are compositionally distinct, from the phylum down to the species level, from all hillslope communities. Bacteria from phyla lacking isolated representatives consistently increase in abundance with increasing depth, but only in the riparian zone saturated sediments we found Candidate Phyla Radiation bacteria. Riparian zone microbial communities are functionally differentiated from hillslope communities based on their capacities for carbon and nitrogen fixation and sulfate reduction. Selenium reduction is prominent at depth in weathered shale and saturated riparian zone sediments and could impact water quality. We anticipate that the drivers of community composition and metabolic potential identified throughout the studied transect will predict patterns across the larger watershed hillslope system.

15.
Sci Rep ; 9(1): 10370, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31316095

ABSTRACT

Determining the carbon sources for active microbial populations in the subsurface is a challenging but highly informative component of subsurface microbial ecology. This work developed a method to provide ecological insights into groundwater microbial communities by characterizing community RNA through its radiocarbon and ribosomal RNA (rRNA) signatures. RNA was chosen as the biomolecule of interest because rRNA constitutes the majority of RNA in prokaryotes, represents recently active organisms, and yields detailed taxonomic information. The method was applied to a groundwater filter collected from a shallow alluvial aquifer in Colorado. RNA was extracted, radiometrically dated, and the 16S rRNA was analyzed by RNA-Seq. The RNA had a radiocarbon signature (Δ14C) of -193.4 ± 5.6‰. Comparison of the RNA radiocarbon signature to those of potential carbon pools in the aquifer indicated that at least 51% of the RNA was derived from autotrophy, in close agreement with the RNA-Seq data, which documented the prevalence of autotrophic taxa, such as Thiobacillus and Gallionellaceae. Overall, this hybrid method for RNA analysis provided cultivation-independent information on the in-situ carbon sources of active subsurface microbes and reinforced the importance of autotrophy and the preferential utilization of dissolved over sedimentary organic matter in alluvial aquifers.


Subject(s)
Autotrophic Processes , Bacteria/metabolism , Groundwater/microbiology , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Water Microbiology , Bacteria/genetics , Bacteria/isolation & purification , Base Sequence , Carbon Cycle , Carbon Radioisotopes/analysis , Colorado , Escherichia coli/metabolism , Iron/metabolism , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Radiometric Dating , Sequence Analysis, RNA , Sulfur/metabolism
16.
Environ Sci Technol ; 53(7): 3399-3409, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30807121

ABSTRACT

Uranium (U) groundwater contamination is a major concern at numerous former mining and milling sites across the Upper Colorado River Basin (UCRB), USA, where U(IV)-bearing solids have accumulated within naturally reduced zones (NRZs). Understanding the processes governing U reduction and oxidation within NRZs is critical for assessing the persistence of U in groundwater. To evaluate the redox cycling of uranium, we measured the U concentrations and isotopic compositions (δ238U) of sediments and pore waters from four study sites across the UCRB that span a gradient in sediment texture and composition. We observe that U accumulation occurs primarily within fine-grained (low-permeability) NRZs that show active redox variations. Low-permeability NRZs display high accumulation and low export of U, with internal redox cycling of U. In contrast, within high-permeability NRZs, U is remobilized under oxidative conditions, possibly without any fractionation, and transported outside the NRZs. The low δ238U of sediments outside of defined NRZs suggests that these reduced zones act as additional U sources. Collectively, our results indicate that fine-grained NRZs have a greater potential to retain uranium, whereas NRZs with higher permeability may constitute a more-persistent but dilute U source.


Subject(s)
Groundwater , Uranium , Water Pollutants, Radioactive , Colorado , Geologic Sediments , Oxidation-Reduction , Rivers
17.
Environ Sci Technol ; 52(15): 8133-8145, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29996052

ABSTRACT

Reduced zones in the subsurface represent biogeochemically active hotspots enriched in buried organic matter and reduced metals. Within a shallow alluvial aquifer located near Rifle, CO, reduced zones control the fate and transport of uranium (U). Though an influx of dissolved oxygen (DO) would be expected to mobilize U, we report U immobilization. Groundwater U concentrations decreased following delivery of DO (21.6 mg O2/well/h). After 23 days of DO delivery, injection of oxygenated groundwater was paused and resulted in the rebound of groundwater U concentrations to preinjection levels. When DO delivery resumed (day 51), groundwater U concentrations again decreased. The injection was halted on day 82 again and resulted in a rebound of groundwater U concentrations. DO delivery rate was increased to 54 mg O2/well/h (day 95) whereby groundwater U concentrations increased. Planktonic cell abundance remained stable throughout the experiment, but virus-to-microbial cell ratio increased 1.8-3.4-fold with initial DO delivery, indicative of microbial activity in response to DO injection. Together, these results indicate that the redox-buffering capacity of reduced sediments can prevent U mobilization, but could be overcome as delivery rate or oxidant concentration increases, mobilizing U.


Subject(s)
Groundwater , Uranium , Water Pollutants, Radioactive , Geologic Sediments , Oxygen
18.
Sci Total Environ ; 637-638: 672-685, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29758424

ABSTRACT

Recharge of alluvial aquifers is a key component in understanding the interaction between floodplain vadose zone biogeochemistry and groundwater quality. The Rifle Site (a former U-mill tailings site) adjacent to the Colorado River is a well-established field laboratory that has been used for over a decade for the study of biogeochemical processes in the vadose zone and aquifer. This site is considered an exemplar of both a riparian floodplain in a semiarid region and a post-remediation U-tailings site. In this paper we present Sr isotopic data for groundwater and vadose zone porewater samples collected in May and July 2013 to build a mixing model for the fractional contribution of vadose zone porewater (i.e. recharge) to the aquifer and its variation across the site. The vadose zone porewater contribution to the aquifer ranged systematically from 0% to 38% and appears to be controlled largely by the microtopography of the site. The area-weighted average contribution across the site was 8% corresponding to a net recharge of 7.5 cm. Given a groundwater transport time across the site of ~1.5 to 3 years, this translates to a recharge rate between 5 and 2.5 cm/yr, and with the average precipitation to the site implies a loss from the vadose zone due to evapotranspiration of 83% to 92%, both ranges are in good agreement with previously published results by independent methods. A uranium isotopic (234U/238U activity ratios) mixing model for groundwater and surface water samples indicates that a ditch across the site is hydraulically connected to the aquifer and locally significantly affects groundwater. Groundwater samples with high U concentrations attributed to natural bio-reduced zones have 234U/238U activity ratios near 1, suggesting that the U currently being released to the aquifer originated from the former U-mill tailings.

19.
Environ Sci Technol ; 52(6): 3422-3430, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29464949

ABSTRACT

Biostimulation to induce reduction of soluble U(VI) to relatively immobile U(IV) is an effective strategy for decreasing aqueous U(VI) concentrations in contaminated groundwater systems. If oxidation of U(IV) occurs following the biostimulation phase, U(VI) concentrations increase, challenging the long-term effectiveness of this technique. However, detecting U(IV) oxidation through dissolved U concentrations alone can prove difficult in locations with few groundwater wells to track the addition of U to a mass of groundwater. We propose the 238U/235U ratio of aqueous U as an independent, reliable tracer of U(IV) remobilization via oxidation or mobilization of colloids. Reduction of U(VI) produces 238U-enriched U(IV), whereas remobilization of solid U(IV) should not induce isotopic fractionation. The incorporation of remobilized U(IV) with a high 238U/235U ratio into the aqueous U(VI) pool produces an increase in 238U/235U of aqueous U(VI). During several injections of nitrate to induce U(IV) oxidation, 238U/235U consistently increased, suggesting 238U/235U is broadly applicable for detecting mobilization of U(IV).


Subject(s)
Groundwater , Uranium , Water Pollutants, Radioactive , Biodegradation, Environmental , Nitrates , Oxidation-Reduction
20.
Environ Sci Technol ; 52(2): 503-512, 2018 01 16.
Article in English | MEDLINE | ID: mdl-26371540

ABSTRACT

Accurate mapping of the composition and structure of minerals and associated biological materials is critical in geomicrobiology and environmental research. Here, we have developed an apparatus that allows the correlation of cryogenic transmission electron microscopy (cryo-TEM) and synchrotron hard X-ray microprobe (SHXM) data sets to precisely determine the distribution, valence state, and structure of selenium in biofilms sampled from a contaminated aquifer near Rifle, CO. Results were replicated in the laboratory via anaerobic selenate-reducing enrichment cultures. 16S rRNA analyses of field-derived biofilm indicated the dominance of Betaproteobacteria from the Comamonadaceae family and uncultivated members of the Simplicispira genus. The major product in field and culture-derived biofilms is ∼25-300 nm red amorphous Se0 aggregates of colloidal nanoparticles. Correlative analyses of the cultures provided direct evidence for the microbial dissimilatory reduction of Se(VI) to Se(IV) to Se0. Extended X-ray absorption fine-structure spectroscopy showed red amorphous Se0 with a first shell Se-Se interatomic distance of 2.339 ± 0.003 Å. Complementary scanning transmission X-ray microscopy revealed that these aggregates are strongly associated with a protein-rich biofilm matrix. These findings have important implications for predicting the stability and mobility of Se bioremediation products and understanding of Se biogeochemical cycling. The approach, involving the correlation of cryo-SHXM and cryo-TEM data sets from the same specimen area, is broadly applicable to biological and environmental samples.


Subject(s)
Groundwater , Selenium , Biodegradation, Environmental , RNA, Ribosomal, 16S , Selenic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...