Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NAR Cancer ; 4(1): zcac004, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35252866

ABSTRACT

Mutations in the exonuclease domain of POLE are associated with tumors harboring very high mutation burdens. The mechanisms linking this significant mutation accumulation and tumor development remain poorly understood. Pole +/P286R;Trp53 +/- mice showed accelerated cancer mortality compared to Pole +/P286R;Trp53 +/+ mice. Cells from Pole +/P286R mice showed increased p53 activation, and subsequent loss of p53 permitted rapid growth, implicating canonical p53 loss of heterozygosity in POLE mutant tumor growth. However, p53 status had no effect on tumor mutation burden or single base substitution signatures in POLE mutant tumors from mice or humans. Pten has important roles in maintaining genome stability. We find that PTEN mutations are highly enriched in human POLE mutant tumors, including many in POLE signature contexts. One such signature mutation, PTEN-F341V, was previously shown in a mouse model to specifically decrease nuclear Pten and lead to increased DNA damage. We found tumors in Pole +/P286R mice that spontaneously acquired PtenF341V mutations and were associated with significantly reduced nuclear Pten and elevated DNA damage. Re-analysis of human TCGA (The Cancer Genome Atlas) data showed that all PTEN-F341V mutations occurred in tumors with mutations in POLE. Taken together with recent published work, our results support the idea that development of POLE mutant tumors may involve disabling surveillance of nuclear DNA damage in addition to POLE-mediated hypermutagenesis.

2.
Mol Cell ; 78(6): 1166-1177.e6, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32497495

ABSTRACT

Human tumors with exonuclease domain mutations in the gene encoding DNA polymerase ε (POLE) have incredibly high mutation burdens. These errors arise in four unique mutation signatures occurring in different relative amounts, the etiologies of which remain poorly understood. We used CRISPR-Cas9 to engineer human cell lines expressing POLE tumor variants, with and without mismatch repair (MMR). Whole-exome sequencing of these cells after defined numbers of population doublings permitted analysis of nascent mutation accumulation. Unlike an exonuclease active site mutant that we previously characterized, POLE cancer mutants readily drive signature mutagenesis in the presence of functional MMR. Comparison of cell line and human patient data suggests that the relative abundance of mutation signatures partitions POLE tumors into distinct subgroups dependent on the nature of the POLE allele, its expression level, and MMR status. These results suggest that different POLE mutants have previously unappreciated differences in replication fidelity and mutagenesis.


Subject(s)
DNA Mismatch Repair/genetics , DNA Polymerase II/genetics , DNA Polymerase II/metabolism , Alleles , Cell Line, Tumor , DNA Mismatch Repair/physiology , Humans , Mutagenesis/genetics , Mutation/genetics , Neoplasms/genetics , Neoplasms/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...