Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(8): e0201413, 2018.
Article in English | MEDLINE | ID: mdl-30106972

ABSTRACT

In a global environment of increasing species extinctions and decreasing availability of funds with which to combat the causes of biodiversity loss, maximising the efficiency of conservation efforts is crucial. The only way to ensure maximum return on conservation investment is to incorporate the cost, benefit and likelihood of success of conservation actions into decision-making in a systematic and objective way. Here we report on the application of a Project Prioritization Protocol (PPP), first implemented by the New Zealand Government, to target and prioritize investment in threatened species in New South Wales, Australia, under the state's new Saving our Species program. Detailed management prescriptions for 368 threatened species were developed via an expert elicitation process, and were then prioritized using quantitative data on benefit, likelihood of success and implementation cost, and a simple cost-efficiency equation. We discuss the outcomes that have been realized even in the early stages of the program; including the efficient development of planning resources made available to all potential threatened species investors and the demonstration of a transparent and objective approach to threatened species management that will significantly increase the probability of meeting an objective to secure the greatest number of threatened species from extinction.


Subject(s)
Endangered Species/economics , Extinction, Biological , Government Programs/economics , Costs and Cost Analysis , Government Programs/legislation & jurisprudence , Government Programs/standards , New South Wales , New Zealand
2.
Conserv Biol ; 23(2): 294-306, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19183200

ABSTRACT

There is widespread agreement that biodiversity loss must be reduced, yet to alleviate threats to plant and animal species, the forces driving these losses need to be better understood. We searched for explanatory variables for threatened-species data at the country level through land-use information instead of previously used socioeconomic and demographic variables. To explain the number of threatened species in one country, we used information on land-use patterns in all neighboring countries and on the extent of the country's sea border. We carried out multiple regressions of the numbers of threatened species as a function of land-use patterns, and we tested various specifications of this function, including spatial autocorrelation. Most cross-border land-use patterns had a significant influence on the number of threatened species, and land-use patterns explained the number of threatened species better than less proximate socioeconomic variables. More specifically, our overall results showed a highly adverse influence of plantations and permanent cropland, a weaker negative influence of permanent pasture, and, for the most part, a beneficial influence of nonarable lands and natural forest. Surprisingly, built-up land also showed a conserving influence on threatened species. The adverse influences extended to distances between about 250 km (plants) and 2000 km (birds and mammals) away from where the species threat was recorded, depending on the species. Our results highlight that legislation affecting biodiversity should look beyond national boundaries.


Subject(s)
Conservation of Natural Resources , Ecosystem , Extinction, Biological , Human Activities , Animals , Birds , Demography , International Cooperation , Mammals , Models, Biological , Plants , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...