Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 41(24): e113003, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36377534

ABSTRACT

Maturation of membrane proteins is complicated by the need to fold in three distinct environments. While much is known about folding in the two aqueous milieus constituted by cytoplasm and ER lumen, our knowledge of the folding, arrangement, and quality control of transmembrane regions within the lipid bilayer, and its facilitation by molecular chaperones, is limited. New work by Bloemeke et al now reveals an expanded role of the ER chaperone calnexin acting within the lipid bilayer in a carbohydrate-independent manner.


Subject(s)
Lipid Bilayers , Taste , Calnexin/metabolism , Protein Folding , Molecular Chaperones/metabolism , Carbohydrates , Calcium-Binding Proteins/metabolism
2.
J Magn Reson ; 345: 107336, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36442299

ABSTRACT

Not all proteins are amenable to uniform isotopic labeling with 13C and 15N, something needed for the widely used, and largely deductive, triple resonance assignment process. Among them are proteins expressed in mammalian cell culture where native glycosylation can be maintained, and proper formation of disulfide bonds facilitated. Uniform labeling in mammalian cells is prohibitively expensive, but sparse labeling with one or a few isotopically enriched amino acid types is an option for these proteins. However, assignment then relies on accessing the best match between a variety of measured NMR parameters and predictions based on 3D structure, often from X-ray crystallography. Finding this match is a challenging process that has benefitted from many computational tools, including trained neural nets for chemical shift prediction, genetic algorithms for searches through a myriad of assignment possibilities, and now AI-based prediction of high-quality structures for protein targets. AssignSLP_GUI, a new version of a software package for assignment of resonances from sparsely-labeled proteins, uses many of these tools. These tools and new additions to the package are highlighted in an application to a sparsely-labeled domain from a glycoprotein, CEACAM1.

3.
Commun Biol ; 5(1): 1113, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266535

ABSTRACT

Methanogens and anaerobic methane-oxidizing archaea (ANME) are important players in the global carbon cycle. Methyl-coenzyme M reductase (MCR) is a key enzyme in methane metabolism, catalyzing the last step in methanogenesis and the first step in anaerobic methane oxidation. Divergent mcr and mcr-like genes have recently been identified in uncultured archaeal lineages. However, the assembly and biochemistry of MCRs from uncultured archaea remain largely unknown. Here we present an approach to study MCRs from uncultured archaea by heterologous expression in a methanogen, Methanococcus maripaludis. Promoter, operon structure, and temperature were important determinants for MCR production. Both recombinant methanococcal and ANME-2 MCR assembled with the host MCR forming hybrid complexes, whereas tested ANME-1 MCR and ethyl-coenzyme M reductase only formed homogenous complexes. Together with structural modeling, this suggests that ANME-2 and methanogen MCRs are structurally similar and their reaction directions are likely regulated by thermodynamics rather than intrinsic structural differences.


Subject(s)
Archaea , Mesna , Archaea/genetics , Archaea/metabolism , Mesna/metabolism , Oxidoreductases/metabolism , Methane/metabolism
4.
Proc Natl Acad Sci U S A ; 119(43): e2202992119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36251991

ABSTRACT

N-glycosylation is a common posttranslational modification of secreted proteins in eukaryotes. This modification targets asparagine residues within the consensus sequence, N-X-S/T. While this sequence is required for glycosylation, the initial transfer of a high-mannose glycan by oligosaccharyl transferases A or B (OST-A or OST-B) can lead to incomplete occupancy at a given site. Factors that determine the extent of transfer are not well understood, and understanding them may provide insight into the function of these important enzymes. Here, we use mass spectrometry (MS) to simultaneously measure relative occupancies for three N-glycosylation sites on the N-terminal IgV domain of the recombinant glycoprotein, hCEACAM1. We demonstrate that addition is primarily by the OST-B enzyme and propose a kinetic model of OST-B N-glycosylation. Fitting the kinetic model to the MS data yields distinct rates for glycan addition at most sites and suggests a largely stochastic initial order of glycan addition. The model also suggests that glycosylation at one site influences the efficiency of subsequent modifications at the other sites, and glycosylation at the central or N-terminal site leads to dead-end products that seldom lead to full glycosylation of all three sites. Only one path of progressive glycosylation, one initiated by glycosylation at the C-terminal site, can efficiently lead to full occupancy for all three sites. Thus, the hCEACAM1 domain provides an effective model system to study site-specific recognition of glycosylation sequons by OST-B and suggests that the order and efficiency of posttranslational glycosylation is influenced by steric cross-talk between adjoining acceptor sites.


Subject(s)
Asparagine , Hexosyltransferases , Asparagine/metabolism , Glycoproteins/metabolism , Glycosylation , Hexosyltransferases/genetics , Hexosyltransferases/metabolism , Mannose , Polysaccharides , Transferases/metabolism
5.
Sci Rep ; 12(1): 14769, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042257

ABSTRACT

Human roundabout 1 (hRobo1) is an extracellular receptor glycoprotein that plays important roles in angiogenesis, organ development, and tumor progression. Interaction between hRobo1 and heparan sulfate (HS) has been shown to be essential for its biological activity. To better understand the effect of HS binding we engineered a lanthanide-binding peptide sequence (Loop) into the Ig2 domain of hRobo1. Native mass spectrometry was used to verify that loop introduction did not inhibit HS binding or conformational changes previously suggested by gas phase ion mobility measurements. NMR experiments measuring long-range pseudocontact shifts were then performed on 13C-methyl labeled hRobo1-Ig1-2-Loop in HS-bound and unbound forms. The magnitude of most PCSs for methyl groups in the Ig1 domain increase in the bound state confirming a change in the distribution of interdomain geometries. A grid search over Ig1 orientations to optimize the fit of data to a single conformer for both forms produced two similar structures, both of which differ from existing X-ray crystal structures and structures inferred from gas-phase ion mobility measurements. The structures and degree of fit suggest that the hRobo1-Ig1-2 structure changes slightly and becomes more rigid on HS binding. This may have implications for Robo-Slit signaling.


Subject(s)
Nerve Tissue Proteins/chemistry , Receptors, Immunologic/chemistry , Heparitin Sulfate/metabolism , Humans , Magnetic Resonance Spectroscopy , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/metabolism , Signal Transduction , Roundabout Proteins
6.
Methods Mol Biol ; 2303: 87-92, 2022.
Article in English | MEDLINE | ID: mdl-34626372

ABSTRACT

Traveling wave ion-mobility mass spectrometry (TWIMS) combined with native mass spectrometry (MS) has emerged as a powerful tool for analyzing biomolecules, including complexes of protein and heparan sulfate (HS). This technique allows determination of the stoichiometry of the protein-HS interaction and information on the overall 3D molecular envelope.


Subject(s)
Ion Mobility Spectrometry , Mass Spectrometry , Glycosaminoglycans , Proteins
7.
Glycobiology ; 31(4): 425-435, 2021 05 03.
Article in English | MEDLINE | ID: mdl-32902634

ABSTRACT

Preparation of samples for nuclear magnetic resonance (NMR) characterization of larger proteins requires enrichment with less abundant, NMR-active, isotopes such as 13C and 15N. This is routine for proteins that can be expressed in bacterial culture where low-cost isotopically enriched metabolic substrates can be used. However, it can be expensive for glycosylated proteins expressed in mammalian culture where more costly isotopically enriched amino acids are usually used. We describe a simple, relatively inexpensive procedure in which standard commercial media is supplemented with 13C-enriched glucose to achieve labeling of all glycans plus all alanines of the N-terminal domain of the highly glycosylated protein, CEACAM1. We demonstrate an ability to detect partially occupied N-glycan sites, sites less susceptible to processing by an endoglycosidase, and some unexpected truncation of the amino acid sequence. The labeling of both the protein (through alanines) and the glycans in a single culture requiring no additional technical expertise past standard mammalian expression requirements is anticipated to have several applications, including structural and functional screening of the many glycosylated proteins important to human health.


Subject(s)
Glucose , Glycoproteins , Animals , Carbon Isotopes , Glucose/metabolism , Glycoproteins/metabolism , Humans , Isotope Labeling/methods , Magnetic Resonance Spectroscopy , Mammals/metabolism , Nuclear Magnetic Resonance, Biomolecular
8.
J Biomol NMR ; 73(3-4): 191-198, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31041649

ABSTRACT

Residual dipolar couplings (RDCs) provide both structural and dynamical information useful in the characterization of biological macromolecules. While most data come from the interaction of simple pairs of directly bonded spin-1/2 nuclei (1H-15N, 1H-13C, 1H-1H), it is possible to acquire data from interactions among the multiple spins of 13C-labeled methyl groups (1H3-13C). This is especially important because of the advantages that observation of 13C-labeled methyl groups offers in working with very large molecules. Here we consider some of the options for measurement of methyl RDCs in large and often fully protonated proteins and arrive at a pulse sequence that exploits both J-modulation and direct detection of 13C. Its utility is illustrated by application to a fully protonated two domain fragment from the mammalian glycoprotein, Robo1, 13C-methyl-labeled in all valines.


Subject(s)
Carbon/chemistry , Nuclear Magnetic Resonance, Biomolecular , Proteins/chemistry , Carbon Isotopes/chemistry , Glycosylation , Magnetic Resonance Spectroscopy , Methylation , Nuclear Magnetic Resonance, Biomolecular/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...