Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Environ Health Rep ; 10(3): 337-352, 2023 09.
Article in English | MEDLINE | ID: mdl-37491689

ABSTRACT

PURPOSE OF REVIEW: Organosulfur compounds are intentionally added to natural gas as malodorants with the intent of short-term nasal inhalation to aid in leak detection. Regulatory exposure limits have not been established for all commonly used natural gas odorants, and recent community-level exposure events and growing evidence of indoor natural gas leakage have raised concerns associated with natural gas odorant exposures. We conducted a scoping review of peer-reviewed scientific publications on human exposures and animal toxicological studies of natural gas odorants to assess toxicological profiles, exposure potential, health effects and regulatory guidelines associated with commonly used natural gas odorants. RECENT FINDINGS: We identified only 22 studies which met inclusion criteria for full review. Overall, there is limited evidence of both transient nonspecific health symptoms and clinically diagnosed causative neurotoxic effects associated with prolonged odorant exposures. Across seven community-level exposure events and two occupational case reports, consistent symptom patterns included: headache, ocular irritation, nose and throat irritation, respiratory complaints such as shortness of breath and asthma attacks, and skin irritation and rash. Of these, respiratory inflammation and asthma exacerbations are the most debilitating, whereas the high prevalence of ocular and dermatologic symptoms suggest a non-inhalation route of exposure. The limited evidence available raises the possibility that organosulfur odorants may pose health risks at exposures much lower than presently understood, though additional dose-response studies are needed to disentangle specific toxicologic effects from nonspecific responses to noxious organosulfur odors. Numerous recommendations are provided including more transparent and prescriptive natural gas odorant use practices.


Subject(s)
Asthma , Odorants , Animals , Humans , Natural Gas
2.
Environ Health ; 18(1): 58, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31280723

ABSTRACT

BACKGROUND: Spatially accurate population data are critical for determining health impacts from many known risk factors. However, the utility of the increasing spatial resolution of disease mapping and environmental exposures is limited by the lack of receptor population data at similar sub-census block spatial scales. METHODS: Here we apply an innovative method (Population Allocation by Occupied Domicile Estimation - ABODE) to disaggregate U.S. Census populations by allocating an average person per household to geospatially-identified residential housing units (RHU). We considered two possible sources of RHU location data: address point locations and building footprint centroids. We compared the performance of ABODE with the common proportional population allocation (PPA) method for estimating the nighttime residential populations within 200 m radii and setback areas (100 - 300 ft) around active underground natural gas storage (UGS) wells (n = 9834) in six U.S. states. RESULTS: Address location data generally outperformed building footprint data in predicting total counts of census residential housing units, with correlations ranging from 0.67 to 0.81 at the census block level. Using residentially-sited addresses only, ABODE estimated upwards of 20,000 physical households with between 48,126 and 53,250 people living within 200 m of active UGS wells - likely encompassing the size of a proposed UGS Wellhead Safety Zone. Across the 9834 active wells assessed, ABODE estimated between 5074 and 10,198 more people living in these areas compare to PPA, and the difference was significant at the individual well level (p = < 0.0001). By either population estimation method, OH exhibits a substantial degree of hyperlocal land use conflict between populations and UGS wells - more so than other states assessed. In some rare cases, population estimates differed by more than 100 people for the small 200 m2 well-areas. ABODE's explicit accounting of physical households confirmed over 50% of PPA predictions as false positives indicated by non-zero predictions in areas absent physical RHUs. CONCLUSIONS: Compared to PPA - in allocating identical population data at sub-census block spatial scales -ABODE provides a more precise population at risk (PAR) estimate with higher confidence estimates of populations at greatest risk. 65% of UGS wells occupy residential urban and suburban areas indicating the unique land use conflicts presented by UGS systems that likely continue to experience population encroachment. Overall, ABODE confirms tens of thousands of homes and residents are likely located within the proposed UGS Wellhead Safety Zone - and in some cases within state's oil and gas well surface setback distances - of active UGS wells.


Subject(s)
Environmental Exposure , Environmental Monitoring/methods , Housing/statistics & numerical data , Natural Gas , Oil and Gas Fields , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...