Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36431615

ABSTRACT

The growing trend towards high voltage electrical assets and propulsion in the aeronautics and space industry pose new challenges in electrical insulation materials that cannot be overlooked. Transition to new high voltage electrified systems with unprecedented high levels of voltage, power, and efficiency must be safe and reliable. Improvements in both performance and safety of megawatt power systems is complicated because of the need for additional power transmission wiring and cabling and new safety requirements that have the potential of making the resulting systems heavier. To mitigate this issue, novel lightweight materials and system solutions are required that would result in lower specific weights in the insulator and conductor. Although reduced size and weight of system components can be achieved with new concepts, designs, and technologies, the high voltage (≥300 V) operation presents a significant challenge. This challenge is further complicated when considering the extreme operating environment that is experienced in aircraft, spacecraft, and targeted human exploration destinations. This paper reviews the extreme environmental challenges for aerospace electrical insulation and the needs associated with operating under high voltage and extreme environments. It also examines several recently developed robust lightweight electrical insulation materials that could enhance insulation performance and life. In aerospace, research must consider mass when developing new technologies. The impact of these recent developments provides a pathway which could enable next generation high altitude all electric aircraft, lightweight power transmission cables for a future sustained presence on the Moon and missions to Mars using HV propulsion, such as spacecraft with Nuclear Electric Propulsion systems.

2.
ACS Omega ; 5(32): 20004-20013, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32832754

ABSTRACT

Dielectric analysis (DEA) is a thermal analysis technique primarily developed to optimize polymer cure profiles in manufacturing facilities to reduce scrap and to diagnose insulation. The recent implementation of this technique to characterize the behavior of new in-house electrical insulation formulations has been advantageous in providing a better understanding of insulation exposed to thermal and electrical stresses at their anticipated operating temperatures and frequencies. Because the dielectric properties of in-house high-voltage insulation formulations are not well understood, DEA was initially carried out using a well-established commercially available polyimide film. This report documents the findings from using dielectric thermal analysis to characterize the electrical properties of commercially available polyimide films and in-house polyimide composite formulations that were exposed to environments anticipated in high-voltage electric motors. The effects of moisture content and thermal aging on the dielectric properties of commercial polyimide are also reported. Information presented in this paper illustrates that DEA can be used as a viable technique to screen candidates for new electrical insulation.

3.
ACS Appl Mater Interfaces ; 8(14): 9327-34, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27044063

ABSTRACT

Carbon nanotube (CNT) sheets represent a novel implementation of CNTs that enable the tailoring of electrical and mechanical properties for applications in the automotive and aerospace industries. Small molecule functionalization and postprocessing techniques, such as irradiation with high-energy particles, are methods that can enhance the mechanical properties of CNTs. However, the effect that these modifications have on the electrical conduction mechanisms has not been extensively explored. By characterizing the mechanical and electrical properties of multiwalled carbon nanotube (MWCNT) sheets with different functional groups and irradiation doses, we can expand our insights into the extent of the trade-off that exists between mechanical strength and electrical conductivity for commercially available CNT sheets. Such insights allow for the optimization of design pathways for engineering applications that require a balance of material property enhancements.

4.
ACS Appl Mater Interfaces ; 6(9): 6120-6, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24720450

ABSTRACT

The inherent strength of individual carbon nanotubes (CNTs) offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of CNT forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated into that of sheets and yarns, where the bulk material strength is limited by intertube electrostatic attractions and slippage. The focus of this work was to assess postprocessing of CNT sheets and yarns to improve the macro-scale strength of these material forms. Both small-molecule functionalization and electron-beam irradiation were evaluated as means to enhance the tensile strength and Young's modulus of the bulk CNT materials. Mechanical testing revealed a 57% increase in tensile strength of CNT sheets upon functionalization compared with unfunctionalized sheets, while an additional 48% increase in tensile strength was observed when functionalized sheets were irradiated. Similarly, small-molecule functionalization increased tensile strength of yarn by up to 25%, whereas irradiation of the functionalized yarns pushed the tensile strength to 88% beyond that of the baseline yarn.

5.
Neurobiol Dis ; 40(1): 135-45, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20206262

ABSTRACT

Infantile-onset Neuronal Ceroid Lipofuscinosis (INCL) is a severe pediatric neurodegenerative disorder produced by mutations in the gene encoding palmitoyl-protein thioesterase 1 (Ppt1). This enzyme is responsible for the removal of a palmitate post-translational modification from an unknown set of substrate proteins. To better understand the function of Ppt1 in neurons, we performed an unbiased dominant loss-of-function genetic modifier screen in Drosophila using a previously characterized Ppt1 gain-of-function system. The enhancers and suppressors identified in our screen make novel connections between Ppt1 and genes involved in cellular trafficking and the modulation of synaptic growth. We further support the relevance of our screen by demonstrating that Garland cells from Ppt1 loss-of-function mutants have defects in endocytic trafficking. Endocytic tracer uptake and ultrastructural analysis of these non-neuronal cells points to Ppt1 playing a role in modulating the early stages of vesicle formation. This work lays the groundwork for further experimental exploration of these processes to better understand their contributions to the INCL disease process.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/cytology , Drosophila melanogaster/enzymology , Membrane Proteins/physiology , Neurons/enzymology , Animals , Animals, Genetically Modified , Cells, Cultured , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Membrane Proteins/genetics , Mutation/genetics , Neural Pathways/metabolism , Neural Pathways/physiology , Neuronal Plasticity/genetics , Photoreceptor Cells, Invertebrate/physiology , Protein Transport/genetics , Thiolester Hydrolases , Transport Vesicles/physiology
6.
Fly (Austin) ; 2(4): 198-214, 2008.
Article in English | MEDLINE | ID: mdl-18719403

ABSTRACT

Palmitoylation is the post-translational addition of a palmitate moiety to a cysteine residue through a covalent thioester bond. The addition and removal of this modification is controlled by both palmitoyl acyl-transferases and thioesterases. Using bioinformatic analysis, we identified 22 DHHC family palmitoyl acyl-transferase homologs in the Drosophila genome. We used in situ hybridization,RT-PCR, and published FlyAtlas microarray data to characterize the expression patterns of all 22 fly homologs. Our results indicate that all are expressed genes, but several, including CG1407, CG4676, CG5620, CG6017/dHIP14, CG6618, CG6627 and CG17257 appear to be enriched in neural tissues suggesting that they are important for neural function. Furthermore, we have found that several may be expressed in a sex-specific manner with adult male specific expression of CG4483 and CG17195. Using tagged versions of the DHHC genes, we demonstrate that fly DHHC proteins are primarily located in either the Golgi Apparatus or Endoplasmic Reticulum in S2 cells, except for CG1407, which was found on the plasma membrane. We also characterized the subcellular localization and expression of the three known thioesterases: Palmitoyl-protein Thioesterase 1 (Ppt1), Palmitoyl-protein Thioesterase 2 (Ppt2)and Acyl-protein Thioesterase 1 (APT1). Our results indicate that Ppt1 and Ppt2 are the major lysosomal thioesterases while APT1 is the likely cytoplasmic thioesterase. Finally, in vivo rescue experiments show that Ppt2 expression cannot rescue the neural inclusion phenotypes associated with loss of Ppt1, further supporting distinct functions and substrates for these two thioesterases. These results will serve as the basis for a more complete understanding of the protein palmitoylome's normal cellular functions in the fly and will lead to further insights into the molecular etiology of diseases associated with the mis-regulation of palmitoylation.


Subject(s)
Acyltransferases/metabolism , Drosophila Proteins/metabolism , Drosophila/enzymology , Membrane Proteins/metabolism , Palmitoyl-CoA Hydrolase/metabolism , Thiolester Hydrolases/metabolism , Acyltransferases/genetics , Amino Acid Motifs , Amino Acid Sequence , Animals , Cell Line , Drosophila/genetics , Drosophila/growth & development , Drosophila Proteins/genetics , Genes, Insect , Humans , Male , Membrane Proteins/genetics , Molecular Sequence Data , Multigene Family , Palmitoyl-CoA Hydrolase/genetics , Thiolester Hydrolases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...