Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 136(6): 1429-1439, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38660727

ABSTRACT

Excessive dynamic airway collapse (EDAC) is a recognized cause of exertional dyspnea arising due to invagination of the trachea and/or main bronchi. EDAC is typically assessed by evaluating large airway movement with forced expiratory maneuvers. This differs from the respiratory response to exercise hyperpnea. We aimed to evaluate large airway movement during physical activity, with continuous bronchoscopy during exercise (CBE), in healthy subjects and compare findings with resting bronchoscopic maneuvers and imaging techniques. Twenty-eight individuals were recruited to complete two visits including treadmill-based CBE, to voluntary exhaustion, and cine magnetic resonance imaging (MRI) with forced expiratory maneuvers at rest. Twenty-five subjects [aged 29 (26-33) yr, 52% female] completed the study (n = 2 withdrew before bronchoscopy, and one was unable to tolerate insertion of bronchoscope). The majority (76%) achieved a peak heart rate of >90% predicted during CBE. The procedure was prematurely terminated in five subjects (n = 3; elevated blood pressure and n = 2; minor oxygen desaturation). The CBE assessment enabled adequate tracheal visualization in all cases. Excessive dynamic airway collapse (tracheal collapse ≥50%) was identified in 16 subjects (64%) on MRI, and in six (24%) individuals during resting bronchoscopy, but in no cases with CBE. No serious adverse events were reported, but minor adverse events were evident. The CBE procedure permits visualization of large airway movement during physical activity. In healthy subjects, there was no evidence of EDAC during strenuous exercise, despite evidence during forced maneuvers on imaging, thus challenging conventional approaches to diagnosis.NEW & NOTEWORTHY This study demonstrates that large airway movement can be visualized with bronchoscopy undertaken during vigorous exercise. This approach does not require sedation and permits characterization of the behavior of the large airways and the tendency toward collapse during upright, ambulatory exercise. In healthy individuals, the response pattern of the large airways during exercise appears to differ markedly from the pattern of airway closure witnessed during forced expiratory maneuvers, assessed via imaging.


Subject(s)
Bronchoscopy , Exercise , Feasibility Studies , Healthy Volunteers , Humans , Bronchoscopy/methods , Female , Male , Adult , Exercise/physiology , Trachea/physiology , Trachea/diagnostic imaging , Exercise Test/methods , Bronchi/diagnostic imaging , Bronchi/physiology
2.
J Appl Physiol (1985) ; 136(3): 472-481, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38205552

ABSTRACT

The integrative response to exercise differs between sexes, with oxidative energy contribution purported as a potential mechanism. The present study investigated whether this difference was evident in the kinetics of oxygen uptake (V̇o2) and extraction (HHb + Mb) during exercise. Sixteen adults (8 males, 8 females, age: 27 ± 5 yr) completed three experimental visits. Incremental exercise testing was performed to obtain lactate threshold and V̇o2peak. Subsequent visits involved three 6-min cycling bouts at 80% of lactate threshold and one 30-min bout at a work rate of 30% between the lactate threshold and power at V̇o2peak. Pulmonary gas exchange and near-infrared spectroscopy of the vastus lateralis were used to continuously sample V̇o2 and HHb + Mb, respectively. The phase II V̇o2 kinetics were quantified using monoexponential curves during moderate and heavy exercise. Slow component amplitudes were also quantified for the heavy-intensity domain. Relative V̇o2peak values were not different between sexes (P = 0.111). Males achieved ∼30% greater power outputs (P = 0.002). In the moderate- and heavy-intensity domains, the relative amplitude of the phase II transition was not different between sexes for V̇o2 (∼24 and ∼40% V̇o2peak, P ≥ 0.179) and HHb + Mb (∼20 and ∼32% ischemia, P ≥ 0.193). Similarly, there were no sex differences in the time constants for V̇o2 (∼28 s, P ≥ 0.385) or HHb + Mb (∼10 s, P ≥ 0.274). In the heavy-intensity domain, neither V̇o2 (P ≥ 0.686) or HHb + Mb (P ≥ 0.432) slow component amplitudes were different between sexes. The oxidative response to moderate- and heavy-intensity exercises did not differ between males and females, suggesting similar dynamic responses of oxidative metabolism during intensity-matched exercise.NEW & NOTEWORTHY This study demonstrated no sex differences in the oxidative response to moderate- and heavy-intensity cycling exercise. The change in oxygen uptake and deoxyhemoglobin were modeled with monoexponential curve fitting, which revealed no differences in the rate of oxidative energy provision between sexes. This provides insight into previously reported sex differences in the integrative response to exercise.


Subject(s)
Lactic Acid , Sex Characteristics , Adult , Humans , Female , Male , Young Adult , Bicycling , Cell Respiration , Oxygen
3.
ERJ Open Res ; 9(6)2023 Nov.
Article in English | MEDLINE | ID: mdl-38152082

ABSTRACT

Background: Domiciliary spirometry (DS) is a novel tool that is widely employed in the assessment of respiratory disease. We assessed real-world feasibility, effectiveness and value of a physiologist-led home spirometry programme in patients with treatment-refractory severe asthma. Methods: Patients were referred and provided with a hand-held DS device. Patients completed baseline measurements in a physiologist-led virtual clinic and were instructed to provide further values during any periods of respiratory symptoms. Outcome measures included prevalence of new obstructed events, DS adherence and uptake of this approach. Results: 112 patients were enrolled from November 2020 to January 2023. 102 individuals, mean±sd age 44±13 years (86% female) with median (IQR) forced expiratory volume in 1 s % predicted 88% (77-97%), successfully recorded baseline spirometry values. During follow-up (24 months), 11 (11%) were identified with new obstructive spirometry and were subsequently able to be commenced on biologic therapy. Patient engagement was poor with median (IQR) of 4 (2-6) attempts of contact made before baseline values were recorded, and 2 (1-3) attempts required to record technically acceptable values. Continued DS use was suboptimal; 34% failed to use their device after baseline and only 10% continued at the end of the study period. The cost of DS measurements was greater than a single hospital-based visit but enables multiple event capture. Conclusion: Overall, DS measurement uptake was poor, with a minority of patients continuing to use the device at the end of the study period. However, for those that engage, DS provides an alternative approach to traditional hospital-based spirometry measurements that can alter clinical management.

4.
Article in English | MEDLINE | ID: mdl-36539388

ABSTRACT

Athletes typically experience a mild-to-moderate, self-limiting illness following infection with the novel severe acute respiratory syndrome coronavirus 2. Some athletes, however, can develop prolonged symptoms, with breathlessness, cough, and chest tightness impacting return to training and competition. In athletes with persistent cardiopulmonary symptoms following COVID-19, focus is usually placed on the identification and characterization of cardiac complications, such as myocarditis. In this review, we focus on summarizing the literature assessing pulmonary complications and physiological consequences associated with COVID-19 illness in athletes. The review also provides recommendations for clinical assessment of the athlete with pulmonary issues following COVID-19 and directions for future research.

SELECTION OF CITATIONS
SEARCH DETAIL
...