Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cardiovasc Comput Tomogr ; 17(4): 254-260, 2023.
Article in English | MEDLINE | ID: mdl-37210242

ABSTRACT

BACKGROUND: Computed tomography coronary angiography (CTCA) is an established modality for the diagnosis and assessment of cardiovascular disease. However, price and space pressure have mostly necessitated outsourcing CTCA to external radiology providers. Advara HeartCare has recently integrated CT services within local clinical networks across Australia. This study examined the benefits of the presence (integrated) or absence (pre-integrated) of this "in-house" CTCA service in real-world clinical practice. METHODS: De-identified patient data from electronic medical records were used to create an Advara HeartCare CTCA database. Data analysis included clinical history, demographics, CTCA procedure, and 30-day outcomes post-CTCA from two age-matched cohorts: integrated (n â€‹= â€‹495) and pre-integrated (n â€‹= â€‹456). RESULTS: Data capture was more comprehensive and standardised across the integrated cohort. There was a 21% increase in referrals for CTCA from cardiologists observed for the integration cohort vs. pre-integration [n â€‹= â€‹332 (72.8%) pre-integration vs. n â€‹= â€‹465 (93.9%) post-integration, p â€‹< â€‹0.0001] with a parallel increase in diagnostic assessments including blood tests [n â€‹= â€‹209 (45.8%) vs. n â€‹= â€‹387 (78.1%), respectively, p â€‹< â€‹0.0001]. The integrated cohort received lower total dose length product [Median 212 (interquartile range 136-418) mGy∗cm vs. 244 (141.5, 339.3) mGy∗cm, p â€‹= â€‹0.004] during the CTCA procedure. 30-days after CTCA scan, there was a significantly higher use of lipid-lowering therapies in the integrated cohort [n â€‹= â€‹133 (50.5%) vs. n â€‹= â€‹179 (60.6%), p â€‹= â€‹0.04], along with a significant decrease in the number of stress echocardiograms performed [n â€‹= â€‹14 (10.6%) vs. n â€‹= â€‹5 (11.6%), p â€‹= â€‹0.01]. CONCLUSION: Integrated CTCA has salient benefits in patient management, including increased pathology tests, statin usage, and decreased post-CTCA stress echocardiography utilisation. Our ongoing work will examine the effect of integration on cardiovascular outcomes.


Subject(s)
Cardiology , Coronary Artery Disease , Humans , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Sensitivity and Specificity , Predictive Value of Tests , Tomography, X-Ray Computed/methods , Computed Tomography Angiography , Disease Management
2.
FASEB J ; 37(4): e22846, 2023 04.
Article in English | MEDLINE | ID: mdl-36856983

ABSTRACT

Colchicine is a broad-acting anti-inflammatory agent that has attracted interest for repurposing in atherosclerotic cardiovascular disease. Here, we studied its ability at a human equivalent dose of 0.5 mg/day to modify plaque formation and composition in murine atherosclerosis and investigated its actions on macrophage responses to atherogenic stimuli in vitro. In atherosclerosis induced by high-cholesterol diet, Apoe-/- mice treated with colchicine had 50% reduction in aortic oil Red O+ plaque area compared to saline control (p = .001) and lower oil Red O+ staining of aortic sinus lesions (p = .03). In vitro, addition of 10 nM colchicine inhibited foam cell formation from murine and human macrophages after treatment with oxidized LDL (ox-LDL). Mechanistically, colchicine downregulated glycosylation and surface expression of the ox-LDL uptake receptor, CD36, and reduced CD36+ staining in aortic sinus plaques. It also decreased macrophage uptake of cholesterol crystals, resulting in lower intracellular lysosomal activity, inhibition of the NLRP3 inflammasome, and reduced secretion of IL-1ß and IL-18. Colchicine's anti-atherosclerotic actions were accentuated in a mouse model of unstable plaque induced by carotid artery tandem stenosis surgery, where it decreased lesion size by 48% (p = .01), reduced lipid (p = .006) and necrotic core area (p = .007), increased collagen content and cap-to-necrotic core ratio (p = .05), and attenuated plaque neutrophil extracellular traps (p < .001). At low dose, colchicine's effects were not accompanied by the evidence of microtubule depolymerization. Together, these results show that colchicine exerts anti-atherosclerotic and plaque-stabilizing effects at low dose by inhibiting foam cell formation and cholesterol crystal-induced inflammation. This provides a new framework to support its repurposing for atherosclerotic cardiovascular disease.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Carotid Stenosis , Humans , Animals , Mice , Foam Cells , Colchicine , Cholesterol
3.
Biomedicines ; 10(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36009353

ABSTRACT

Macrophage-derived nitric oxide (NO) plays a critical role in atherosclerosis and presents as a potential biomarker. We assessed the uptake, distribution, and NO detection capacity of an irreversible, ruthenium-based, fluorescent NO sensor (Ru-NO) in macrophages, plasma, and atherosclerotic plaques. In vitro, incubation of Ru-NO with human THP1 monocytes and THP1-PMA macrophages caused robust uptake, detected by Ru-NO fluorescence using mass-cytometry, confocal microscopy, and flow cytometry. THP1-PMA macrophages had higher Ru-NO uptake (+13%, p < 0.05) than THP1 monocytes with increased Ru-NO fluorescence following lipopolysaccharide stimulation (+14%, p < 0.05). In mice, intraperitoneal infusion of Ru-NO found Ru-NO uptake was greater in peritoneal CD11b+F4/80+ macrophages (+61%, p < 0.01) than CD11b+F4/80− monocytes. Infusion of Ru-NO into Apoe−/− mice fed high-cholesterol diet (HCD) revealed Ru-NO fluorescence co-localised with atherosclerotic plaque macrophages. When Ru-NO was added ex vivo to aortic cell suspensions from Apoe−/− mice, macrophage-specific uptake of Ru-NO was demonstrated. Ru-NO was added ex vivo to tail-vein blood samples collected monthly from Apoe−/− mice on HCD or chow. The plasma Ru-NO fluorescence signal was higher in HCD than chow-fed mice after 12 weeks (37.9%, p < 0.05). Finally, Ru-NO was added to plasma from patients (N = 50) following clinically-indicated angiograms. There was lower Ru-NO fluorescence from plasma from patients with myocardial infarction (−30.7%, p < 0.01) than those with stable coronary atherosclerosis. In conclusion, Ru-NO is internalised by macrophages in vitro, ex vivo, and in vivo, can be detected in atherosclerotic plaques, and generates measurable changes in fluorescence in murine and human plasma. Ru-NO displays promising utility as a sensor of atherosclerosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...