Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Magn Reson Chem ; 61(2): 73-82, 2023 02.
Article in English | MEDLINE | ID: mdl-33786881

ABSTRACT

Amphetamine and cathinone derivatives are abused recreationally due to the sense of euphoria they provide to the user. Methodologies for the rapid detection of the drug derivative present in a seized sample, or an indication of the drug class, are beneficial to law enforcement and healthcare providers. Identifying the drug class is prudent because derivatisation of these drugs, to produce regioisomers, for example, occurs frequently to circumvent global and local drug laws. Thus, newly encountered derivatives might not be present in a spectral library. Employment of benchtop nuclear magnetic resonance (NMR) could be used to provide rapid analysis of seized samples as well as identifying the class of drug present. Discrimination of individual amphetamine-, methcathinone-, N-ethylcathinone and nor-ephedrine-derived fluorinated and methylated regioisomers is achieved herein using qualitative automated 1 H NMR analysis and compared to gas chromatography-mass spectrometry (GC-MS) data. Two seized drug samples, SS1 and SS2, were identified to contain 4-fluoroamphetamine by 1 H NMR (match score median = 0.9933) and GC-MS (RRt = 5.42-5.43 min). The amount of 4-fluoroamphetamine present was 42.8%-43.4% w/w and 48.7%-49.2% w/w for SS1 and SS2, respectively, from quantitative 19 F NMR analysis, which is in agreement with the amount determined by GC-MS (39.9%-41.4% w/w and 49.0%-49.3% w/w). The total time for the qualitative 1 H NMR and quantitative 19 F NMR analysis is ~10 min. This contrasts to ~40 min for the GC-MS method. The NMR method also benefits from minimal sample preparation. Thus, benchtop NMR affords rapid, and discriminatory, analysis of the drug present in a seized sample.


Subject(s)
Amphetamine , Ephedrine , Ephedrine/analysis , Ephedrine/chemistry , Magnetic Resonance Spectroscopy
3.
ACS Omega ; 4(4): 7103-7112, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31179411

ABSTRACT

An automated approach to the collection of 1H NMR (nuclear magnetic resonance) spectra using a benchtop NMR spectrometer and the subsequent analysis, processing, and elucidation of components present in seized drug samples are reported. An algorithm is developed to compare spectral data to a reference library of over 300 1H NMR spectra, ranking matches by a correlation-based score. A threshold for identification was set at 0.838, below which identification of the component present was deemed unreliable. Using this system, 432 samples were surveyed and validated against contemporaneously acquired GC-MS (gas chromatography-mass spectrometry) data. Following removal of samples which possessed no peaks in the GC-MS trace or in both the 1H NMR spectrum and GC-MS trace, the remaining 416 samples matched in 93% of cases. Thirteen of these samples were binary mixtures. A partial match (one component not identified) was obtained for 6% of samples surveyed whilst only 1% of samples did not match at all.

4.
J Phys Chem B ; 119(4): 1416-24, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25539423

ABSTRACT

We report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing (1)H and (13)C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality. In the (1)H NMR spectrum, the signal for acetonitrile is enhanced 8-fold over its thermal counterpart when [Ir(H)2(IMes)(MeCN)3](+) is the catalyst. Upon addition of pyridine or pyridine-d5, the active catalyst changes to [Ir(H)2(IMes)(py)2(MeCN)](+) and the resulting acetonitrile (1)H signal enhancement increases to 20- and 60-fold, respectively. In (13)C NMR studies, polarization transfers optimally to the quaternary (13)C nucleus of MeCN while the methyl (13)C is hardly polarized. Transfer to (13)C is shown to occur first via the (1)H-(1)H coupling between the hydrides and the methyl protons and then via either the (2)J or (1)J couplings to the respective (13)Cs, of which the (2)J route is more efficient. These experimental results are rationalized through a theoretical treatment which shows excellent agreement with experiment. In the case of MeCN, longitudinal two-spin orders between pairs of (1)H nuclei in the three-spin methyl group are created. Two-spin order states, between the (1)H and (13)C nuclei, are also created, and their existence is confirmed for Me(13)CN in both the (1)H and (13)C NMR spectra using the Only Parahydrogen Spectroscopy protocol.


Subject(s)
Acetonitriles/chemistry , Ligands , Magnetic Resonance Spectroscopy
5.
J Am Chem Soc ; 136(28): 10124-31, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-24945724

ABSTRACT

We report pump-probe experiments employing laser-synchronized reactions of para-hydrogen (para-H2) with transition metal dihydride complexes in conjunction with nuclear magnetic resonance (NMR) detection. The pump-probe experiment consists of a single nanosecond laser pump pulse followed, after a precisely defined delay, by a single radio frequency (rf) probe pulse. Laser irradiation eliminates H2 from either Ru(PPh3)3(CO)(H)2 1 or cis-Ru(dppe)2(H)2 2 in C6D6 solution. Reaction with para-H2 then regenerates 1 and 2 in a well-defined nuclear spin state. The rf probe pulse produces a high-resolution, single-scan (1)H NMR spectrum that can be recorded after a pump-probe delay of just 10 µs. The evolution of the spectra can be followed as the pump-probe delay is increased by micro- or millisecond increments. Due to the sensitivity of this para-H2 experiment, the resulting NMR spectra can have hydride signal-to-noise ratios exceeding 750:1. The spectra of 1 oscillate in amplitude with frequency 1101 ± 3 Hz, the chemical shift difference between the chemically inequivalent hydrides. The corresponding hydride signals of 2 oscillate with frequency 83 ± 5 Hz, which matches the difference between couplings of the hydrides to the equatorial (31)P nuclei. We use the product operator formalism to show that this oscillatory behavior arises from a magnetic coherence in the plane orthogonal to the magnetic field that is generated by use of the laser pulse without rf initialization. In addition, we demonstrate how chemical shift imaging can differentiate the region of laser irradiation thereby distinguishing between thermal and photochemical reactivity within the NMR tube.

6.
Magn Reson Chem ; 52(7): 358-69, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24801201

ABSTRACT

Hyperpolarization methods are used in NMR to overcome its inherent sensitivity problem. Herein, the biologically relevant target nicotinamide is polarized by the hyperpolarization technique signal amplification by reversible exchange. We illustrate how the polarization transfer field, and the concentrations of parahydrogen, the polarization-transfer-catalyst and substrate can be used to maximize signal amplification by reversible exchange effectiveness by reference to the first-order spin system of this target. The catalyst is shown to be crucial in this process, first by facilitating the transfer of hyperpolarization from parahydrogen to nicotinamide and then by depleting the resulting polarized states through further interaction. The 15 longitudinal one, two, three and four spin order terms produced are rigorously identified and quantified using an automated flow apparatus in conjunction with NMR pulse sequences based on the only parahydrogen spectroscopy protocol. The rates of build-up of these terms were shown to follow the order four~three > two > single spin; this order parallels their rates of relaxation. The result of these competing effects is that the less-efficiently formed single-spin order terms dominate at the point of measurement with the two-spin terms having amplitudes that are an order of magnitude lower. We also complete further measurements to demonstrate that (13)C NMR spectra can be readily collected where the long-lived quaternary (13)C signals appear with significant intensity. These are improved upon by using INEPT. In summary, we dissect the complexity of this method, highlighting its benefits to the NMR community and its applicability for high-sensitivity magnetic resonance imaging detection in the future.


Subject(s)
Flow Injection Analysis/instrumentation , Hydrogen/chemistry , Magnetic Resonance Spectroscopy/instrumentation , Microchemistry/instrumentation , Molecular Probe Techniques/instrumentation , Niacinamide/analysis , Niacinamide/chemistry , Equipment Design , Equipment Failure Analysis
7.
J Am Chem Soc ; 135(22): 8388-99, 2013 Jun 05.
Article in English | MEDLINE | ID: mdl-23701049

ABSTRACT

Pd(0)2(dba)3 (dba = E,E-dibenzylidene acetone) is the most widely used Pd(0) source in Pd-mediated transformations. Pd(0)2(dba-Z)3 (Z = dba aryl substituents) complexes exhibit remarkable and differential catalytic performance in an eclectic array of cross-coupling reactions. The precise structure of these types of complexes has been confounding, since early studies in 1970s to the present day. In this study the solution and solid-state structures of Pd(0)2(dba)3 and Pd(0)2(dba-Z)3 have been determined. Isotopic labeling ((2)H and (13)C) has allowed the solution structures of the freely exchanging major and minor isomers of Pd(0)2(dba)3 to be determined at high field (700 MHz). DFT calculations support the experimentally determined major and minor isomeric structures, which show that the major isomer of Pd(0)2(dba)3 possesses bridging dba ligands found exclusively in a s-cis,s-trans conformation. For the minor isomer one of the dba ligands is found exclusively in a s-trans,s-trans conformation. Single crystal X-ray diffraction analysis of Pd(0)2(dba)3·CHCl3 (high-quality data) shows that all three dba ligands are found over two positions. NMR spectroscopic analysis of Pd(0)2(dba-Z)3 reveals that the aryl substituent has a profound effect on the rate of Pd-olefin exchange and the global stability of the complexes in solution. Complexes containing the aryl substituents, 4-CF3, 4-F, 4-t-Bu, 4-hexoxy, 4-OMe, exhibit well-resolved (1)H NMR spectra at 298 K, whereas those containing 3,5-OMe and 3,4,5-OMe exhibit broad spectra. The solid-state structures of three Pd(0)2(dba-Z)3 complexes (4-F, 4-OMe, 3,5-OMe) have been determined by single crystal X-ray diffraction methods, which have been compared with Goodson's X-ray structure of Pd(0)2(dba-4-OH)3.


Subject(s)
Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Crystallography, X-Ray , Isotope Labeling , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure
9.
J Chem Phys ; 131(19): 194505, 2009 Nov 21.
Article in English | MEDLINE | ID: mdl-19929058

ABSTRACT

When parahydrogen adds to a metal template containing a substrate of interest, the substrate and parahydrogen become coupled, and polarization is shared between the two without the incorporation of the parahydrogen into the substrate. A mechanism for this polarization transfer is presented in which the transfer is propagated through the scalar couplings. At zero field, polarization is transferred between two-, three-, and four-spin zero quantum states, but no single spin magnetization is created. The interplay between the chemical shift evolution and the evolution under scalar coupling at non-zero field generates additional longitudinal spin order and now includes single spin longitudinal z-magnetization. The additional chemical shift interaction introduces a field dependency to the nuclear spin states of the polarized substrate. The net effect of the polarization field strength on the resultant nuclear spin states is shown to be predictable but complex.


Subject(s)
Hydrogen/chemistry , Models, Theoretical
10.
J Biol Chem ; 284(45): 31156-63, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-19744923

ABSTRACT

The widespread utilization of sugars by microbes is reflected in the diversity and multiplicity of cellular transporters used to acquire these compounds from the environment. The model bacterium Escherichia coli has numerous transporters that allow it to take up hexoses and pentoses, which recognize the more abundant pyranose forms of these sugars. Here we report the biochemical and structural characterization of a transporter protein YtfQ from E. coli that forms part of an uncharacterized ABC transporter system. Remarkably the crystal structure of this protein, solved to 1.2 A using x-ray crystallography, revealed that YtfQ binds a single molecule of galactofuranose in its ligand binding pocket. Selective binding of galactofuranose over galactopyranose was also observed using NMR methods that determined the form of the sugar released from the protein. The pattern of expression of the ytfQRTyjfF operon encoding this transporter mirrors that of the high affinity galactopyranose transporter of E. coli, suggesting that this bacterium has evolved complementary transporters that enable it to use all the available galactose present during carbon limiting conditions.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Galactose/metabolism , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/metabolism , Pentoses/metabolism , Amino Acid Sequence , Binding Sites , Biological Transport , Crystallography, X-Ray , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Kinetics , Models, Molecular , Molecular Sequence Data , Monosaccharide Transport Proteins/genetics , Operon , Protein Binding , Sequence Alignment , Substrate Specificity
11.
J Mol Biol ; 390(5): 1007-18, 2009 Jul 31.
Article in English | MEDLINE | ID: mdl-19500589

ABSTRACT

The GAF domain is a simple module widespread in proteins of diverse function, including cell signalling proteins and transcription factors. Its structure, typically spanning 150 residues, has three tiers: a basal layer of two or more alpha-helices, a middle layer of beta-pleated sheet and a top layer formed by segments of the polypeptide that connect strands of the beta-sheet. In structures of GAF domains in complex with their effectors, these polypeptide segments envelop the ligand, enclosing it in a cavity whose base is formed by the beta-sheet, such that ligand binding and release must be accompanied by conformational rearrangements of the distal portion of the structure. Descriptions of binding are presently limited by the absence of a GAF domain for which both liganded and unliganded structures are known. Earlier, we solved the crystal structure of the GAF domain of CodY, a branched-chain amino acid and GTP-responsive regulator of the transcription of stationary-phase and virulence genes in Bacillus, in complexes with isoleucine and valine. Here, we report the structure of this domain in its unliganded form, allowing definition of the structural changes accompanying ligand binding. The core of the protein and its dimerisation interface are essentially unchanged, in agreement with circular dichroism spectroscopy experiments that show that the secondary structure composition is unperturbed by ligand binding. There is however extensive refolding of the binding site loops, with up to 15-A movements of the coiled segment linking beta3 and beta4, such that the binding pocket is not formed in the absence of the ligand. The implications of these structural rearrangements for ligand affinity and specificity are discussed. Finally, saturation-transfer-difference NMR spectroscopy showed binding of isoleucine but not that of GTP to the GAF domain, suggesting that the two cofactors do not have a common binding site.


Subject(s)
Bacillus subtilis/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , Guanosine Triphosphate/metabolism , Ligands , Models, Molecular , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Spectrum Analysis , Structure-Activity Relationship
12.
Science ; 323(5922): 1708-11, 2009 Mar 27.
Article in English | MEDLINE | ID: mdl-19325111

ABSTRACT

The sensitivity of both nuclear magnetic resonance spectroscopy and magnetic resonance imaging is very low because the detected signal strength depends on the small population difference between spin states even in high magnetic fields. Hyperpolarization methods can be used to increase this difference and thereby enhance signal strength. This has been achieved previously by incorporating the molecular spin singlet para-hydrogen into hydrogenation reaction products. We show here that a metal complex can facilitate the reversible interaction of para-hydrogen with a suitable organic substrate such that up to an 800-fold increase in proton, carbon, and nitrogen signal strengths are seen for the substrate without its hydrogenation. These polarized signals can be selectively detected when combined with methods that suppress background signals.


Subject(s)
Hydrogen/chemistry , Magnetic Resonance Spectroscopy , Carbon/analysis , Iridium/chemistry , Ligands , Magnetic Resonance Imaging , Niacinamide/chemistry , Nitrogen/analysis , Protons , Pyridines/chemistry , Sensitivity and Specificity
13.
J Magn Reson ; 183(2): 203-12, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16982205

ABSTRACT

Radiation damping induced by the strong water magnetization in Z-spectroscopy experiments can be sufficient to perturb significantly the resultant Z-spectrum. With a probe tuned to exact electrical resonance the effects are relatively straightforward, narrowing the central feature of the Z-spectrum. Where, as is commonly the case, the probe is tuned sufficiently well to give optimum signal-to-noise ratio and radiofrequency field strength but is not at exact resonance, radiation damping introduces an unexpected asymmetry into the Z-spectrum. This has the potential to complicate the use of Z-spectrum asymmetry to study chemical exchange, for example in the estimation of pH in vivo.


Subject(s)
Artifacts , Magnetic Resonance Spectroscopy/methods , Models, Chemical , Models, Molecular , Water/analysis , Water/chemistry , Computer Simulation , Energy Transfer , Radio Waves , Reproducibility of Results , Sensitivity and Specificity
14.
Magn Reson Med ; 55(4): 762-71, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16528703

ABSTRACT

Accurate quantification of in vivo short echo time spectra is hampered by the presence of overlapping peaks and a significant baseline. In this work the Padé approximant in conjunction with Monte Carlo simulation is used to extract peak areas from short echo time 1H spectra. We exploit the fact that the Padé approximant is known to model broad non-Lorentzian signals as arbitrary sums of Lorentzian components to separate baseline components from sharper metabolite signals by combining the Padé approximant with Monte Carlo simulation. The simulation results demonstrate that the Padé approximant-Monte Carlo hybrid analysis is able to separate the metabolite signals from the baseline, while a least squares fitting of a time domain model may result in significant bias of the peak area estimations. For the in vivo data the estimates of the peak areas using the Padé approximant and AMARES compare well, with the exception of the NAA peak at 2.02 ppm. We suggest that the discrepancy may be due to the baseline contamination as supported by the simulation results; however, without an in vivo gold standard this remains difficult to demonstrate.


Subject(s)
Brain Chemistry , Magnetic Resonance Spectroscopy , Adult , Computer Simulation , Humans , Models, Theoretical , Monte Carlo Method , Physical Phenomena , Physics
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(2 Pt 1): 021702, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15783335

ABSTRACT

The thermodynamics of a simple model, containing the minimum set of features required to provide liquid crystal-like phase behavior and the dipolar coupling observable in the NMR spectrum of orientationally ordered fluids, are presented within the framework of Onsager theory. The model comprises a fluid of hard spherocylinders with a pair of embedded freely rotating magnetic dipoles. The behavior of the isotropic-nematic phase transition is explored as a function magnetic field strength and of the relative orientation between the nematic director and the external magnetic field. When the field and director are aligned the phase diagram is similar to those predicted for a hard rod fluid in flow fields, electric fields, and magnetic fields, with the field promoting orientational order in the fluid and the isotropic-nematic phase transition being replaced by a paranematic-nematic phase transition. In contrast, when the field and director are perpendicular, the field destabilizes the nematic phase and the phase transition is shifted to higher densities. The variation of the mean magnetic moment and the dipolar coupling are examined as a function of the orientational structure of the fluid. The model is used to support the hypothesis that dipolar couplings observed in the spectra of human leg muscle originate from nematic-like liquid crystal phases in relatively small metabolite molecules. The fitted theoretical predictions of the dependence of the dipolar coupling on the orientation of the field with respect to the nematic director are shown to provide a good description of the experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL
...