Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 101(14): 5431-6, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20335024

ABSTRACT

Chemical properties have been used as a way of following the composting process and compost maturity, however, their analysis is very time consuming as each must be separately determined. By developing a more rapid method to predict these properties, time and cost would be saved. This study investigates the use of Fourier Transform mid-Infrared Spectroscopy (FT-IR) for this purpose. FT-IR spectra and measured values of several chemical properties from a variety of compost mixtures were used to produce calibrated models using partial least-squares regression analysis which predicted the known chemical properties. These models displayed a range of accuracies that for most properties was more than sufficient to follow at least broad dynamic changes associated with maturation. The best calibrations were achieved for total C, total N, LOI, lignin, and cellulose with r(2) values within the range 56-77%. Some degree of calibration was achieved for available-P and NH(4)(+)-N, with r(2) values of between 40% and 57%. No useful calibration could be achieved for NO(3)(-) or pH.


Subject(s)
Biotechnology/methods , Soil , Spectroscopy, Fourier Transform Infrared/methods , Calibration , Cellulose/chemistry , Hydrogen-Ion Concentration , Lignin/chemistry , Models, Statistical , Regression Analysis , Reproducibility of Results , Spectrophotometry/methods
2.
Environ Pollut ; 157(2): 690-7, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18819736

ABSTRACT

Trace element contamination of post-industrial sites represents a major environmental problem and sustainable management options for remediating them are required. This study compared two strategies for immobilizing trace elements (Cu, Pb, Zn, and As) in mine spoil: (1) co-composting contaminated soil with organic wastes and (2) conventional incorporation of mature compost into contaminated soil. Sequential chemical extraction of the soil was performed to determine temporal changes in trace element fractionation and bioavailability during composting and plant growth. We show that mine spoil can be co-composted successfully and this action causes significant shifts in metal availability. However, co-composting did not lead to significant differences in metal partitioning in soil or in plant metal uptake compared with simply mixing mine spoil with mature compost. Both treatments promoted plant growth and reduced metal accumulation in plants. We conclude that co-composting provides little additional benefit for remediating trace-element-polluted soil compared with incorporation of compost.


Subject(s)
Biodegradation, Environmental , Industrial Waste , Metals, Heavy/pharmacokinetics , Soil Pollutants/pharmacokinetics , Soil , Chemistry, Physical , Mining , Plant Development , Plants/drug effects , Plants/metabolism
3.
Sci Total Environ ; 336(1-3): 13-24, 2005 Jan 05.
Article in English | MEDLINE | ID: mdl-15589246

ABSTRACT

Cross-linked polyacrylamide gels are increasingly being used in environmental restoration schemes and horticulture as a means of enhancing water supply to plants. However, the environmental impact of cross-linked polyacrylamide gel deployment in soil remains poorly understood. This study assessed the chemical, physical and biological properties of new and field-conditioned cross-linked polyacrylamide gels. Both monomeric acrylamide (11 microg l(-1)) and acrylic acid (285 microg l(-1)) were observed in new gel; however, the levels of monomers in field-conditioned gels (1-6 years old) were very low (acrylamide <1 microg l(-1); acrylic acid <7 microg l(-1)). Generally, freeze-thaw processes and exposure to UV radiation had little effect on gel acrylic acid and acrylamide concentrations. However, elevated temperatures (35 degrees C) caused a significant release of up to 144 mug l(-1) of acrylamide and 453 microg l(-1) of acrylic acid in new gel and up to 25 microg l(-1) of acrylamide and 157 microg l(-1) of acrylic acid in field-conditioned gels. In contrast, gel water holding capacity was highly dependent upon environmental conditions (UV exposure and freeze/thaw cycles produced the greatest loss of water holding in new gels) and gel age. Optical microscopy revealed that after placement in the field the gels became increasingly colonised over time by fungi and bacteria. In enrichment cultures, we were unable, however, to demonstrate microbial growth when cross-linked polyacrylamide was used as the sole nitrogen source. In summary, under a range of conditions cross-linked polyacrylamide did not release acrylamide above legally permitted limits, with the exception of gel subjected to elevated temperatures. However, their capacity for holding water decreased sharply within 18 months. We therefore conclude that cross-linked polyacrylamide placed in soil is relatively stable with respect to the production of potentially toxic acrylamide, a species with a short half-life, which degrades to the much less toxic acrylic acid. However, the loss of water holding capacity raises questions about its long-term effectiveness in land restoration schemes as this is the main reason it is used in this role.


Subject(s)
Acrylic Resins/chemistry , Acrylic Resins/metabolism , Models, Theoretical , Soil Pollutants/isolation & purification , Biodegradation, Environmental , Half-Life , Materials Testing , Mining , Plant Development , Temperature , Ultraviolet Rays , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...