Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0292474, 2024.
Article in English | MEDLINE | ID: mdl-38923956

ABSTRACT

The effects of turbidity and sedimentation stress on early life stages of corals are poorly understood, particularly in Atlantic species. Dredging operations, beach nourishment, and other coastal construction activities can increase sedimentation and turbidity in nearby coral reef habitats and have the potential to negatively affect coral larval development and metamorphosis, reducing sexual reproduction success. In this study, we investigated the performance of larvae of the threatened Caribbean coral species Orbicella faveolata exposed to suspended sediments collected from a reef site in southeast Florida recently impacted by dredging (Port of Miami), and compared it to the performance of larvae exposed to sediments collected from the offshore, natal reef of the parent colonies. In a laboratory experiment, we tested whether low and high doses of each of these sediment types affected the survival, settlement, and respiration of coral larvae compared to a no-sediment control treatment. In addition, we analyzed the sediments used in the experiments with 16S rRNA gene amplicon sequencing to assess differences in the microbial communities present in the Port versus Reef sediments, and their potential impact on coral performance. Overall, only O. faveolata larvae exposed to the high-dose Port sediment treatment had significantly lower survival rates compared to the control treatment, suggesting an initial tolerance to elevated suspended sediments. However, significantly lower settlement rates were observed in both Port treatments (low- and high-dose) compared to the control treatment one week after exposure, suggesting strong latent effects. Sediments collected near the Port also contained different microbial communities than Reef sediments, and higher relative abundances of the bacteria Desulfobacterales, which has been associated with coral disease. We hypothesize that differences in microbial communities between the two sediments may be a contributing factor in explaining the observed differences in larval performance. Together, these results suggest that the settlement success and survival of O. faveolata larvae are more readily compromised by encountering port inlet sediments compared to reef sediments, with potentially important consequences for the recruitment success of this species in affected areas.


Subject(s)
Anthozoa , Coral Reefs , Geologic Sediments , Larva , Animals , Anthozoa/growth & development , Anthozoa/microbiology , Anthozoa/physiology , Larva/growth & development , Geologic Sediments/microbiology , Endangered Species , RNA, Ribosomal, 16S/genetics , Florida , Microbiota
2.
Front Public Health ; 12: 1390210, 2024.
Article in English | MEDLINE | ID: mdl-38932776

ABSTRACT

Introduction: Injecting methamphetamine poses significant health risks, but little is known about how methamphetamine injectors filter their injection preparations and experience related health concerns. Methods: A chain-referral sample of Indigenous people who inject methamphetamine (n = 30) was recruited and semistructured interviews were conducted to collect information on filtration practices and health concerns. Results: Filtration of the injection preparation was described by 53% of injectors. Elevated levels of concern for kidney disease, cancer and heart disease were observed among those who filtered their preparations (ranging from 50 to 56.3%). Concern about liver disease was the most frequent concern among those who filtered their preparations (62.5%) and was elevated in comparison to those who did not use filters (7.1%). Grouped logistic regression revealed a positive association between filtration of the injection preparation and overall health concerns expressed by injectors, after adjusting for gender and age. The marginal posterior distribution of the adjusted odds ratio for filtration of the injection preparation had a posterior median = 35.7, and 95% HPD interval = (5.1, 512.4). Discussion: Results illustrate a positive relationship between filtration of the injection preparation and health concerns among Indigenous people who inject methamphetamine. This likely reflects the use of filtration to reduce harms, and further research is needed to understand the full scope of prevention that may be associated with filtration of methamphetamine injection preparations.


Subject(s)
Methamphetamine , Substance Abuse, Intravenous , Humans , Methamphetamine/administration & dosage , Male , Female , Adult , Filtration , Middle Aged , Indigenous Peoples , Young Adult , Interviews as Topic
3.
BMC Genomics ; 25(1): 226, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424480

ABSTRACT

Long-read sequencing is revolutionizing de-novo genome assemblies, with continued advancements making it more readily available for previously understudied, non-model organisms. Stony corals are one such example, with long-read de-novo genome assemblies now starting to be publicly available, opening the door for a wide array of 'omics-based research. Here we present a new de-novo genome assembly for the endangered Caribbean star coral, Orbicella faveolata, using PacBio circular consensus reads. Our genome assembly improved the contiguity (51 versus 1,933 contigs) and complete and single copy BUSCO orthologs (93.6% versus 85.3%, database metazoa_odb10), compared to the currently available reference genome generated using short-read methodologies. Our new de-novo assembled genome also showed comparable quality metrics to other coral long-read genomes. Telomeric repeat analysis identified putative chromosomes in our scaffolded assembly, with these repeats at either one, or both ends, of scaffolded contigs. We identified 32,172 protein coding genes in our assembly through use of long-read RNA sequencing (ISO-seq) of additional O. faveolata fragments exposed to a range of abiotic and biotic treatments, and publicly available short-read RNA-seq data. With anthropogenic influences heavily affecting O. faveolata, as well as its increasing incorporation into reef restoration activities, this updated genome resource can be used for population genomics and other 'omics analyses to aid in the conservation of this species.


Subject(s)
Anthozoa , Transcriptome , Animals , Sequence Analysis, DNA/methods , Anthozoa/genetics , Genome , Caribbean Region , High-Throughput Nucleotide Sequencing/methods
4.
Ecol Evol ; 13(5): e10096, 2023 May.
Article in English | MEDLINE | ID: mdl-37214603

ABSTRACT

Many reef invertebrates reproduce through simultaneous broadcast spawning, with an apparent advantage of overwhelming potential predators and maximizing propagule survival. Although reef fish have been observed to consume coral gamete bundles during spawning events, there are few records of such predation by benthic invertebrates. Here, we document several instances of the ruby brittle star, Ophioderma rubicundum, capturing and consuming egg-sperm bundles of the mountainous star coral, Orbicella faveolata, and the symmetrical brain coral, Pseudodiploria strigosa, during spawning events in the Cayman Islands in 2012 and the Florida Keys in 2022. These observations are widely separated in space and time (>600 km, 10 years), suggesting that this behavior may be prevalent on western Atlantic reefs. Since O. rubicundum spawns on the same or subsequent nights as these coral species, we hypothesize that this opportunistic feeding behavior takes advantage of lipid-rich coral gamete bundles to recover energy reserves expended by the brittle star during gametogenesis. The consumption of coral gametes by adult brittle stars suggests an underexplored trophic link between reef invertebrates and also provides evidence that ophiuroid-coral symbioses may oscillate between commensalism and parasitism depending on the ontogeny and reproductive status of both animals. Our observations provide insights into the nuanced, dynamic associations between coral reef invertebrates and may have implications for coral reproductive success and resilience.

5.
Proc Biol Sci ; 288(1961): 20211613, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34666521

ABSTRACT

The rapid loss of reef-building corals owing to ocean warming is driving the development of interventions such as coral propagation and restoration, selective breeding and assisted gene flow. Many of these interventions target naturally heat-tolerant individuals to boost climate resilience, but the challenges of quickly and reliably quantifying heat tolerance and identifying thermotolerant individuals have hampered implementation. Here, we used coral bleaching automated stress systems to perform rapid, standardized heat tolerance assays on 229 colonies of Acropora cervicornis across six coral nurseries spanning Florida's Coral Reef, USA. Analysis of heat stress dose-response curves for each colony revealed a broad range in thermal tolerance among individuals (approx. 2.5°C range in Fv/Fm ED50), with highly reproducible rankings across independent tests (r = 0.76). Most phenotypic variation occurred within nurseries rather than between them, pointing to a potentially dominant role of fixed genetic effects in setting thermal tolerance and widespread distribution of tolerant individuals throughout the population. The identification of tolerant individuals provides immediately actionable information to optimize nursery and restoration programmes for Florida's threatened staghorn corals. This work further provides a blueprint for future efforts to identify and source thermally tolerant corals for conservation interventions worldwide.


Subject(s)
Anthozoa , Thermotolerance , Animals , Anthozoa/physiology , Censuses , Coral Reefs , Florida
6.
Cryobiology ; 101: 135-139, 2021 08.
Article in English | MEDLINE | ID: mdl-33887237

ABSTRACT

Cryopreservation of coral sperm requires reliable, travel-ready, inexpensive hardware. To this end, we developed and tested a robust, second-generation, conduction-based cryovial cooling rack assembled from 3D-printed and commercially available parts. Cooling rates from -10 to -80 °C were found to be repeatable at -22.9 ± 1.9 (rate ± SD) °C/min for 1-mL samples and -35.4 ± 3.3 °C/min for 0.5-mL samples. This represents an improvement on the variability of cooling rates in an older design, which was found to be -31.8 ± 7.1 °C/min for 1-mL samples. Design files and a manual were produced to encourage widespread use and the development of derivative designs.


Subject(s)
Anthozoa , Semen Preservation , Animals , Cryopreservation/methods , Cryoprotective Agents , Freezing , Male , Sperm Motility , Spermatozoa
7.
Protist ; 170(1): 38-51, 2019 02.
Article in English | MEDLINE | ID: mdl-30576874

ABSTRACT

Heterosigma akashiwo is a raphidophyte known for forming ichthyotoxic blooms. In order to predict the potential impacts of rising CO2 on H. akashiwo it is necessary to understand the factors influencing growth rates over a range of CO2 concentrations. Here we examined the physiology and gene expression response of H. akashiwo to concentrations from 200 to 1000ppm CO2. Growth rate data were combined from this and previous studies and fit with a CO2 limitation-inhibition model that revealed an apparent growth optimum around 600-800ppm CO2. Physiological changes included a significant increase in C:N ratio at ∼800ppm CO2 and a significant decrease in hydrogen peroxide concentration at ∼1000ppm. Whole transcriptome sequencing of H. akashiwo revealed sharp distinctions in metabolic pathway gene expression between ∼600 and ∼800ppm CO2. Hierarchical clustering by co-expression identified groups of genes with significant correlations to CO2 and growth rate. Genes with significant differential expression with CO2 included carbon concentrating mechanism genes such as beta-carbonic anhydrases and a bicarbonate transporter, which may underpin shifts in physiology. Genes involved in cell motility were significantly changed by both elevated CO2 and growth rate, suggesting that future ocean conditions could modify swimming behavior in this species.


Subject(s)
Carbon Dioxide/analysis , Gene Expression , Stramenopiles/physiology , Stramenopiles/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...