Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Behav Processes ; 151: 73-80, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29499346

ABSTRACT

The ability of parasites to manipulate the behaviour of their hosts has evolved multiple times, and has a clear fitness benefit to the parasite in terms of facilitating growth, reproduction and transfer to suitable hosts. The mechanisms by which these behavioural changes are induced are poorly understood, but in many cases parasite manipulation of serotonergic signalling in the host brain is implicated. Here we report that Phasmarhabditis hermaphrodita, a parasite of terrestrial gastropod molluscs, can alter the behaviour of slugs. Uninfected slugs (Deroceras panormitanum, Arion subfuscus and Arion hortensis) avoid areas where P. hermaphrodita is present, but slugs infected with P. hermaphrodita are more likely to be found where the nematodes are present. This ability is specific to P. hermaphrodita and other nematodes (Steinernema carpocapsae and Heterorhabditis bacteriophora) do not induce this behavioural change. To investigate how P. hermaphrodita changes slug behaviour we exposed slugs to fluoxetine (a selective serotonin reuptake inhibitor) and cyproheptadine (a serotonin receptor antagonist). Uninfected slugs fed fluoxetine no longer avoided areas where P. hermaphrodita was present; and conversely, infected slugs fed cyproheptadine showed no increased attraction to areas with nematodes. These findings suggest that a possible mechanism by which P. hermaphrodita is able to manipulate parasite avoidance behaviour in host slugs is by manipulating serotonergic signalling in the brain, and that increased serotonin levels are potentially associated with a reduction in parasite avoidance.


Subject(s)
Behavior, Animal/physiology , Gastropoda/metabolism , Gastropoda/parasitology , Rhabditoidea/pathogenicity , Serotonin Agents/pharmacology , Animals , Behavior, Animal/drug effects , Gastropoda/drug effects
2.
Ecotoxicology ; 26(1): 141-150, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27933553

ABSTRACT

The effect of environmental pollutants on honeybee behaviour has focused mainly on currently used pesticides. However, honeybees are also exposed to persistent organic pollutants (POPs). The aim of this laboratory based study was to determine if exposure to sublethal field-relevant concentrations of POPs altered the spontaneous behaviour of foraging-age worker honeybees. Honeybees (Apis mellifera) were orally exposed to either a sublethal concentration of the polychlorinated biphenyl (PCB) mixture Aroclor 1254 (100 ng/ml), the organochlorine insecticide lindane (2.91 ng/ml) or vehicle (0.01% DMSO, 0.00015% ethanol in 1M sucrose) for 1-4 days. The frequency of single event behaviours and the time engaged in one of four behavioural states (walking, flying, upside down and stationary) were monitored for 15 min after 1, 2, 3 and 4 days exposure. Exposure to Aroclor 1254 but not lindane increased the frequency and time engaged in honeybee motor activity behaviours in comparison to vehicle. The Aroclor 1254-induced hyperactivity was evident after 1 day of exposure and persisted with repeated daily exposure. In contrast, 1 day of exposure to lindane elicited abdominal spasms and increased the frequency of grooming behaviours in comparison to vehicle exposure. After 4 days of exposure, abdominal spasms and increased grooming behaviours were also evident in honeybees exposed to Aroclor 1254. These data demonstrate that POPs can induce distinct behavioural patterns, indicating different toxicokinetic and toxicodynamic properties. The changes in spontaneous behaviour, particularly the PCB-induced chronic hyperactivity and the associated energy demands, may have implications for colony health.


Subject(s)
Bees/physiology , Behavior, Animal/drug effects , Environmental Pollutants/toxicity , Animals , Hexachlorocyclohexane/toxicity , Hydrocarbons, Chlorinated/toxicity , Insecticides , Polychlorinated Biphenyls/toxicity
3.
PeerJ ; 3: e1413, 2015.
Article in English | MEDLINE | ID: mdl-26618084

ABSTRACT

There is currently a great deal of concern about population declines in pollinating insects. Many potential threats have been identified which may adversely affect the behaviour and health of both honey bees and bumble bees: these include pesticide exposure, and parasites and pathogens. Whether biological pest control agents adversely affect bees has been much less well studied: it is generally assumed that biological agents are safer for wildlife than chemical pesticides. The aim of this study was to test whether entomopathogenic nematodes sold as biological pest control products could potentially have adverse effects on the bumble bee Bombus terrestris. One product was a broad spectrum pest control agent containing both Heterorhabditis sp. and Steinernema sp., the other product was specifically for weevil control and contained only Steinernema kraussei. Both nematode products caused ≥80% mortality within the 96 h test period when bees were exposed to soil containing entomopathogenic nematodes at the recommended field concentration of 50 nematodes per cm(2) soil. Of particular concern is the fact that nematodes from the broad spectrum product could proliferate in the carcasses of dead bees, and therefore potentially infect a whole bee colony or spread to the wider environment.

4.
PLoS One ; 10(8): e0133733, 2015.
Article in English | MEDLINE | ID: mdl-26280999

ABSTRACT

Sodium channels, found ubiquitously in animal muscle cells and neurons, are one of the main target sites of many naturally-occurring, insecticidal plant compounds and agricultural pesticides. Pyrethroids, derived from compounds found only in the Asteraceae, are particularly toxic to insects and have been successfully used as pesticides including on flowering crops that are visited by pollinators. Pyrethrins, from which they were derived, occur naturally in the nectar of some flowering plant species. We know relatively little about how such compounds--i.e., compounds that target sodium channels--influence pollinators at low or sub-lethal doses. Here, we exposed individual adult forager honeybees to several compounds that bind to sodium channels to identify whether these compounds affect motor function. Using an assay previously developed to identify the effect of drugs and toxins on individual bees, we investigated how acute exposure to 10 ng doses (1 ppm) of the pyrethroid insecticides (cyfluthrin, tau-fluvalinate, allethrin and permethrin) and the nectar toxins (aconitine and grayanotoxin I) affected honeybee locomotion, grooming and wing fanning behaviour. Bees exposed to these compounds spent more time upside down and fanning their wings. They also had longer bouts of standing still. Bees exposed to the nectar toxin, aconitine, and the pyrethroid, allethrin, also spent less time grooming their antennae. We also found that the concentration of the nectar toxin, grayanotoxin I (GTX), fed to bees affected the time spent upside down (i.e., failure to perform the righting reflex). Our data show that low doses of pyrethroids and other nectar toxins that target sodium channels mainly influence motor function through their effect on the righting reflex of adult worker honeybees.


Subject(s)
Grooming/drug effects , Locomotion/drug effects , Plant Nectar/toxicity , Pyrethrins/toxicity , Aconitine/toxicity , Animals , Bees , Behavior, Animal/drug effects , Diterpenes/toxicity , Insecticides/toxicity , Nitriles/toxicity , Permethrin/toxicity , Wings, Animal/drug effects , Wings, Animal/physiology
5.
Ecotoxicology ; 23(8): 1409-18, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25011924

ABSTRACT

Systemic pesticides such as neonicotinoids are commonly used on flowering crops visited by pollinators, and their use has been implicated in the decline of insect pollinator populations in Europe and North America. Several studies show that neonicotinoids affect navigation and learning in bees but few studies have examined whether these substances influence their basic motor function. Here, we investigated how prolonged exposure to sublethal doses of four neonicotinoid pesticides (imidacloprid, thiamethoxam, clothianidin, dinotefuran) and the plant toxin, nicotine, affect basic motor function and postural control in foraging-age worker honeybees. We used doses of 10 nM for each neonicotinoid: field-relevant doses that we determined to be sublethal and willingly consumed by bees. The neonicotinoids were placed in food solutions given to bees for 24 h. After the exposure period, bees were more likely to lose postural control during the motor function assay and fail to right themselves if exposed to imidacloprid, thiamethoxam, clothianidin. Bees exposed to thiamethoxam and nicotine also spent more time grooming. Other behaviours (walking, sitting and flying) were not significantly affected. Expression of changes in motor function after exposure to imidacloprid was dose-dependent and affected all measured behaviours. Our data illustrate that 24 h exposure to sublethal doses of neonicotinoid pesticides has a subtle influence on bee behaviour that is likely to affect normal function in a field setting.


Subject(s)
Bees/drug effects , Insecticides/toxicity , Motor Activity/drug effects , Animals , Bees/physiology , Behavior, Animal/drug effects , Guanidines , Imidazoles , Neonicotinoids , Nitro Compounds , Oxazines , Posture , Thiamethoxam , Thiazoles , Toxicity Tests, Acute
6.
Proc Biol Sci ; 281(1787)2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24898372

ABSTRACT

Evidence is accumulating that commonly used pesticides are linked to decline of pollinator populations; adverse effects of three neonicotinoids on bees have led to bans on their use across the European Union. Developing insecticides that pose negligible risks to beneficial organisms such as honeybees is desirable and timely. One strategy is to use recombinant fusion proteins containing neuroactive peptides/proteins linked to a 'carrier' protein that confers oral toxicity. Hv1a/GNA (Galanthus nivalis agglutinin), containing an insect-specific spider venom calcium channel blocker (ω-hexatoxin-Hv1a) linked to snowdrop lectin (GNA) as a 'carrier', is an effective oral biopesticide towards various insect pests. Effects of Hv1a/GNA towards a non-target species, Apis mellifera, were assessed through a thorough early-tier risk assessment. Following feeding, honeybees internalized Hv1a/GNA, which reached the brain within 1 h after exposure. However, survival was only slightly affected by ingestion (LD50>100 µg bee(-1)) or injection of fusion protein. Bees fed acute (100 µg bee(-1)) or chronic (0.35 mg ml(-1)) doses of Hv1a/GNA and trained in an olfactory learning task had similar rates of learning and memory to no-pesticide controls. Larvae were unaffected, being able to degrade Hv1a/GNA. These tests suggest that Hv1a/GNA is unlikely to cause detrimental effects on honeybees, indicating that atracotoxins targeting calcium channels are potential alternatives to conventional pesticides.


Subject(s)
Bees/drug effects , Calcium Channel Blockers/toxicity , Insecticides/toxicity , Mannose-Binding Lectins/toxicity , Plant Lectins/toxicity , Spider Venoms/toxicity , Animals , Bees/growth & development , Calcium Channel Blockers/metabolism , Galanthus/chemistry , Insecticides/metabolism , Larva/drug effects , Learning/drug effects , Mannose-Binding Lectins/genetics , Mannose-Binding Lectins/metabolism , Plant Lectins/genetics , Plant Lectins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/toxicity , Spider Venoms/genetics , Spider Venoms/metabolism
7.
Front Physiol ; 4: 13, 2013.
Article in English | MEDLINE | ID: mdl-23386834

ABSTRACT

Cholinergic signaling is fundamental to neuromuscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signaling can alter the behavior of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioral sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioral effects on honeybees of exposure to a selection of pesticides that target cholinergic signaling by inhibiting acetylcholinesterase (AChE). To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behavior continuously for 15 min. At a 10 nM concentration, all the AChE inhibitors caused similar effects on behavior, notably increased grooming activity and changes in the frequency of bouts of behavior such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behavior, and a 1 µM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the four compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil) or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee AChE inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behavior that could lead to reduced survival.

8.
J Exp Biol ; 216(Pt 10): 1799-807, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23393272

ABSTRACT

Pesticides are important agricultural tools often used in combination to avoid resistance in target pest species, but there is growing concern that their widespread use contributes to the decline of pollinator populations. Pollinators perform sophisticated behaviours while foraging that require them to learn and remember floral traits associated with food, but we know relatively little about the way that combined exposure to multiple pesticides affects neural function and behaviour. The experiments reported here show that prolonged exposure to field-realistic concentrations of the neonicotinoid imidacloprid and the organophosphate acetylcholinesterase inhibitor coumaphos and their combination impairs olfactory learning and memory formation in the honeybee. Using a method for classical conditioning of proboscis extension, honeybees were trained in either a massed or spaced conditioning protocol to examine how these pesticides affected performance during learning and short- and long-term memory tasks. We found that bees exposed to imidacloprid, coumaphos, or a combination of these compounds, were less likely to express conditioned proboscis extension towards an odor associated with reward. Bees exposed to imidacloprid were less likely to form a long-term memory, whereas bees exposed to coumaphos were only less likely to respond during the short-term memory test after massed conditioning. Imidacloprid, coumaphos and a combination of the two compounds impaired the bees' ability to differentiate the conditioned odour from a novel odour during the memory test. Our results demonstrate that exposure to sublethal doses of combined cholinergic pesticides significantly impairs important behaviours involved in foraging, implying that pollinator population decline could be the result of a failure of neural function of bees exposed to pesticides in agricultural landscapes.


Subject(s)
Bees/physiology , Cholinesterase Inhibitors/toxicity , Environmental Exposure , Honey , Memory/drug effects , Pesticides/toxicity , Smell/drug effects , Animals , Bees/drug effects , Conditioning, Psychological/drug effects , Coumaphos/toxicity , Discrimination, Psychological/drug effects , Feeding Behavior/drug effects , Imidazoles/toxicity , Neonicotinoids , Nitro Compounds/toxicity , Odorants , Sample Size , Survival Analysis
9.
Invert Neurosci ; 13(1): 63-70, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23160709

ABSTRACT

The decline of honeybees and other pollinating insects is a current cause for concern. A major factor implicated in their decline is exposure to agricultural chemicals, in particular the neonicotinoid insecticides such as imidacloprid. Honeybees are also subjected to additional chemical exposure when beekeepers treat hives with acaricides to combat the mite Varroa destructor. Here, we assess the effects of acute sublethal doses of the neonicotinoid imidacloprid, and the organophosphate acaricide coumaphos, on honey bee learning and memory. Imidacloprid had little effect on performance in a six-trial olfactory conditioning assay, while coumaphos caused a modest impairment. We report a surprising lack of additive adverse effects when both compounds were administered simultaneously, which instead produced a modest improvement in learning and memory.


Subject(s)
Bees/drug effects , Bees/physiology , Coumaphos/administration & dosage , Imidazoles/administration & dosage , Insecticides/administration & dosage , Learning/drug effects , Memory/drug effects , Nitro Compounds/administration & dosage , Animals , Behavior, Animal/drug effects , Imidazoles/adverse effects , Insecticides/adverse effects , Neonicotinoids , Nitro Compounds/adverse effects , Smell
10.
Mol Biochem Parasitol ; 183(2): 151-7, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22387572

ABSTRACT

Nematode nicotinic acetylcholine receptors are the targets for many effective anthelmintics, including those recently introduced into the market. We have identified a novel nicotinic receptor subunit sequence, acr-26, that is expressed in all the animal parasitic nematodes we examined from clades III, IV and V, but is not present in the genomes of Trichinella spiralis, Caenorhabditis elegans, Pristionchus pacificus and Meloidogyne spp. In Ascaris suum, ACR-26 is expressed on muscle cells isolated from the head, but not from the mid-body region. Sequence comparisons with other vertebrate and nematode subunits suggested that ACR-26 may be capable of forming a functional homomeric receptor; when acr-26 cRNA was injected into Xenopus oocytes along with Xenopus laevis ric-3 cRNA we occasionally observed the formation of acetylcholine- and nicotine-sensitive channels. The unreliable expression of ACR-26 in vitro may suggest that additional subunits or chaperones may be required for efficient formation of the functional receptors. ACR-26 may represent a novel target for the development of cholinergic anthelmintics specific for animal parasites.


Subject(s)
Nematoda/genetics , Protein Subunits/genetics , Receptors, Nicotinic/genetics , Acetylcholine/metabolism , Amino Acid Sequence , Animals , Anthelmintics/metabolism , Cluster Analysis , Molecular Sequence Data , Nematoda/metabolism , Nicotine/metabolism , Phylogeny , Protein Subunits/metabolism , Receptors, Nicotinic/metabolism , Sequence Analysis, DNA , Sequence Homology, Amino Acid
11.
Mol Biochem Parasitol ; 180(2): 99-105, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21945142

ABSTRACT

An isolate of Haemonchus contortus, UGA/2004, highly resistant to benzimidazoles, levamisole, and ivermectin was isolated from sheep at the University of Georgia, and passaged through experimentally infected goats. We measured the expression of twenty-nine mRNAs encoding drug targets and P-glycoproteins (P-gps), comparing the results to a fully susceptible laboratory passaged isolate. Expression levels of some nicotinic acetylcholine receptor mRNAs were markedly different in UGA/2004. Levels of the Hco-acr-8b mRNA, encoding a truncated subunit, were very high in resistant L3, but undetectable in susceptible larvae, with expression of the full-length Hco-acr-8a mRNA also significant increased. Expression of Hco-unc-63 and Hco-unc-29.3 mRNAs was significantly reduced in the resistant larvae. Expression of the Hco-glc-3 and Hco-glc-5 mRNAs, encoding glutamate-gated chloride channel subunits, were slightly reduced in resistant larvae. We observed significant increases in the expression of the Hco-pgp-2 and Hco-pgp-9 mRNAs in the UGA/2004 larvae, consistent with previous reports; we also saw a decrease in the levels of Hco-pgp-1 mRNA. Treatment of the larvae with ivermectin and moxidectin in vitro produced variable and inconsistent changes in P-gp mRNA levels. The sequences of the ß-tubulin isotype 1 mRNAs showed that the resistant larvae had a resistance-associated allele frequency of >95% at codon 200 and ∼40% and codon 167. No changes at codon 198 were present. The presence of the truncated acr-8b mRNA may be a reliable indicator of levamisole resistance, but complex changes in gene expression associated with macrocyclic lactone resistance make the identification of a single genetic marker for this resistance difficult.


Subject(s)
Anthelmintics/pharmacology , Drug Resistance , Haemonchiasis/veterinary , Haemonchus/drug effects , Haemonchus/genetics , Helminth Proteins/genetics , Polymorphism, Genetic , Sheep Diseases/parasitology , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Base Sequence , Benzimidazoles/pharmacology , Chloride Channels/genetics , Chloride Channels/metabolism , Goats , Haemonchiasis/parasitology , Haemonchus/isolation & purification , Haemonchus/metabolism , Helminth Proteins/metabolism , Molecular Sequence Data , Sheep
12.
Adv Exp Med Biol ; 704: 359-71, 2011.
Article in English | MEDLINE | ID: mdl-21290306

ABSTRACT

A wide range of single- and multi-cellular parasites infect humans and other animals, causing some of the most prevalent and debilitating diseases on the planet. There have been virtually no published studies on the TRP channels of this diverse group of organisms. However, since many parasite genomes have been sequenced, it is simple to demonstrate that they are present in all parasitic metazoans and that sequences related to the yeast trp are present in many protozoans, including all the kinetoplastids. We compared the TRP genes of three species of animal and plant parasitic nematode to those of C. elegans and found that the parasitic species all had fewer such genes. These differences may reflect the phylogenetic distance between the species studied, or may be due to loss of specific gene functions following the evolution of the parasitic lifestyle. Other helminth groups, the trematodes and cestodes, seem to possess many TRPC and TRPM genes, but lack TRPV and TRPN. Most ectoparasites are insects or arachnids. We compared the TRP genes of a plant parasitic aphid and an animal parasite louse and tick with those of Drosophila. Again, all the parasitic species seemed to have fewer types of TRP channel, though the difference was less marked than for the nematodes. The aphid lacks TRPP and TRPML channel genes, whereas the tick lacked those encoding TRPVs. Again, these differences may reflect adaptation to parasitism, and could enable TRP channels to be targeted in the development of novel antiparasitic drugs.


Subject(s)
Parasites/metabolism , Transient Receptor Potential Channels/metabolism , Animals , Transient Receptor Potential Channels/genetics
13.
PLoS Pathog ; 5(7): e1000517, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19609360

ABSTRACT

Parasitic nematodes are of medical and veterinary importance, adversely affecting human health and animal welfare. Ascaris suum is a gastrointestinal parasite of pigs; in addition to its veterinary significance it is a good model of the human parasite Ascaris lumbricoides, estimated to infect approximately 1.4 billion people globally. Anthelmintic drugs are essential to control nematode parasites, and nicotinic acetylcholine receptors (nAChRs) on nerve and muscle are the targets of cholinergic anthelmintics such as levamisole and pyrantel. Previous genetic analyses of nematode nAChRs have been confined to Caenorhabditis elegans, which is phylogenetically distinct from Ascaris spp. and many other important parasites. Here we report the cloning and expression of two nAChR subunit cDNAs from A. suum. The subunits are very similar in sequence to C. elegans UNC-29 and UNC-38, are expressed on muscle cells and can be expressed robustly in Xenopus oocytes to form acetylcholine-, nicotine-, levamisole- and pyrantel-sensitive channels. We also demonstrate that changing the stoichiometry of the receptor by injecting different ratios of the subunit cRNAs can reproduce two of the three pharmacological subtypes of nAChR present in A. suum muscle cells. When the ratio was 5:1 (Asu-unc-38ratioAsu-unc-29), nicotine was a full agonist and levamisole was a partial agonist, and oocytes responded to oxantel, but not pyrantel. At the reverse ratio (1:5 Asu-unc-38ratioAsu-unc-29), levamisole was a full agonist and nicotine was a partial agonist, and the oocytes responded to pyrantel, but not oxantel. These results represent the first in vitro expression of any parasitic nicotinic receptor and show that their properties are substantially different from those of C. elegans. The results also show that changing the expression level of a single receptor subunit dramatically altered the efficacy of some anthelmintic drugs. In vitro expression of these subunits may permit the development of parasite-specific screens for future anthelmintics.


Subject(s)
Ascaris suum/metabolism , Helminth Proteins/metabolism , Receptors, Nicotinic/metabolism , Amino Acid Sequence , Animals , Antinematodal Agents/pharmacokinetics , Ascaris suum/cytology , Ascaris suum/genetics , Caenorhabditis elegans Proteins/genetics , Carrier Proteins/genetics , Dose-Response Relationship, Drug , Drug Delivery Systems , Gene Expression , Helminth Proteins/chemistry , Helminth Proteins/genetics , Immunohistochemistry , Microscopy, Fluorescence , Molecular Sequence Data , Nicotine/metabolism , Oocytes/metabolism , Patch-Clamp Techniques , Protein Multimerization , Protein Subunits , RNA, Complementary/metabolism , Receptors, Nicotinic/biosynthesis , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment
14.
Invert Neurosci ; 7(4): 219-26, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17952476

ABSTRACT

Nematode cys-loop ligand gated ion channels (CLGIC) mediate neurotransmission and are important targets for anthelmintics in parasitic nematodes. The CLGIC superfamily in nematodes includes ion channels gated by acetylcholine, gamma-amino butyric acid (GABA), glutamate, glycine and 5-HT. The macrocyclic lactones and the nicotinic agonists are important groups of anthelmintics that target the glutamate gated chloride channels and the nicotinic acetylcholine receptors, respectively. The model organism Caenorhabditis elegans has the most diverse families of cys-loop LGIC known in any organism. Many parasitic nematodes have homologues of C. elegans receptors but to date no genome wide investigations have been done. The genome sequencing projects of Brugia malayi (clade III) and Trichinella spiralis (clade I) have allowed us to characterise the CLGIC families in these species. Although the main groups of CLGICs targeted by anthelmintics are represented in both the nematode genomes investigated here, the CLGIC family is much smaller in B. malayi and T. spiralis, suggesting that care must be taken when using C. elegans as a model organism for distantly related nematodes.


Subject(s)
Chloride Channels/genetics , Nematoda/genetics , Receptors, GABA/genetics , Receptors, Nicotinic/genetics , Animals , Brugia malayi , Caenorhabditis elegans , Chloride Channels/chemistry , Multigene Family , Protein Structure, Tertiary , Receptors, GABA/chemistry , Receptors, Nicotinic/chemistry , Trichinella spiralis
SELECTION OF CITATIONS
SEARCH DETAIL
...