Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biologicals ; 85: 101738, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096736

ABSTRACT

This manuscript describes the use of an analytical assay that combines transfection of mammalian cells and isotope dilution mass spectrometry (IDMS) for accurate quantification of antigen expression. Expired mRNA COVID-19 vaccine material was stored at 4 °C, room temperature (∼25 °C), and 56 °C over a period of 5 weeks. The same vaccine was also exposed to 5 freeze-thaw cycles. Every week, the spike protein antigenic expression in mammalian (BHK-21) cells was evaluated. Housekeeping proteins, ß-actin and GAPDH, were simultaneously quantified to account for the variation in cell counts that occurs during maintenance and growth of cell cultures. Data show that vaccine stored at elevated temperatures results in reduced spike protein expression. Also, maintaining the vaccine in ultracold conditions or exposing the vaccine to freeze-thaw cycles had less effect on the vaccine's ability to produce the antigen in mammalian cells. We describe the use of IDMS as an antibody-free means to accurately quantify expressed protein from mammalian cells transfected with mRNA vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Spike Glycoprotein, Coronavirus/genetics , Freezing , RNA, Messenger/genetics , Mammals
2.
Vaccine ; 41(26): 3872-3884, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37202272

ABSTRACT

The advent of mRNA vaccine technology has been vital in rapidly creating and manufacturing COVID-19 vaccines at an industrial scale. To continue to accelerate this leading vaccine technology, an accurate method is needed to quantify antigens produced by the transfection of cells with a mRNA vaccine product. This will allow monitoring of protein expression during mRNA vaccine development and provide information on how changes to vaccine components affects the expression of the desired antigen. Developing novel approaches that allow for high-throughput screening of vaccines to detect changes in antigen production in cell culture prior to in vivo studies could aid vaccine development. We have developed and optimized an isotope dilution mass spectrometry method to detect and quantify the spike protein expressed after transfection of baby hamster kidney cells with expired COVID-19 mRNA vaccines. Five peptides of the spike protein are simultaneously quantified and provide assurance that protein digestion in the region of the target peptides is complete since results between the five peptides had a relative standard deviation of less than 15 %. In addition, two housekeeping proteins, actin and GAPDH, are quantified in the same analytical run to account for any variation in cell growth within the experiment. IDMS allows a precise and accurate means to quantify protein expression by mammalian cells transfected with an mRNA vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Cricetinae , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , mRNA Vaccines , Isotopes , Antibodies, Viral , Mammals
3.
PLoS One ; 13(4): e0194797, 2018.
Article in English | MEDLINE | ID: mdl-29634782

ABSTRACT

Lipoproteins are complex molecular assemblies that are key participants in the intricate cascade of extracellular lipid metabolism with important consequences in the formation of atherosclerotic lesions and the development of cardiovascular disease. Multiplexed mass spectrometry (MS) techniques have substantially improved the ability to characterize the composition of lipoproteins. However, these advanced MS techniques are limited by traditional pre-analytical fractionation techniques that compromise the structural integrity of lipoprotein particles during separation from serum or plasma. In this work, we applied a highly effective and gentle hydrodynamic size based fractionation technique, asymmetric flow field-flow fractionation (AF4), and integrated it into a comprehensive tandem mass spectrometry based workflow that was used for the measurement of apolipoproteins (apos A-I, A-II, A-IV, B, C-I, C-II, C-III and E), free cholesterol (FC), cholesterol esters (CE), triglycerides (TG), and phospholipids (PL) (phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lysophosphatidylcholine (LPC)). Hydrodynamic size in each of 40 size fractions separated by AF4 was measured by dynamic light scattering. Measuring all major lipids and apolipoproteins in each size fraction and in the whole serum, using total of 0.1 ml, allowed the volumetric calculation of lipoprotein particle numbers and expression of composition in molar analyte per particle number ratios. Measurements in 110 serum samples showed substantive differences between size fractions of HDL and LDL. Lipoprotein composition within size fractions was expressed in molar ratios of analytes (A-I/A-II, C-II/C-I, C-II/C-III. E/C-III, FC/PL, SM/PL, PE/PL, and PI/PL), showing differences in sample categories with combinations of normal and high levels of Total-C and/or Total-TG. The agreement with previous studies indirectly validates the AF4-LC-MS/MS approach and demonstrates the potential of this workflow for characterization of lipoprotein composition in clinical studies using small volumes of archived frozen samples.


Subject(s)
Apolipoproteins/blood , Chromatography, Liquid/methods , Fractionation, Field Flow/methods , Lipids/blood , Lipoproteins/blood , Tandem Mass Spectrometry/methods , Apolipoprotein A-I/metabolism , Apolipoprotein B-100/metabolism , Blood Chemical Analysis/methods , Calibration , Cholesterol/chemistry , Humans , Light , Models, Statistical , Particle Size , Quality Control , Scattering, Radiation , Workflow
4.
Methods Mol Biol ; 1722: 3-20, 2018.
Article in English | MEDLINE | ID: mdl-29264795

ABSTRACT

The bacterial surfaceome, comprising outer membrane-sorted and/or associated (i.e., cell transporters), cell surface-exposed (i.e., adhesins) and extracellularly secreted proteins (i.e., toxins), has been characterized in bacterial pathogens, such as Bordetella pertussis (Bp) to provide information for use in development of diagnostic and prevention strategies. This protein subset has clinical significance, as these bacterial proteins are often associated with attachment to host cells, microbial pathogenesis and antibody-mediated immunity. Here we describe classical surface membrane protein enrichment techniques, followed by proteomic methodologies, such as gel-free protein separation and antibody-affinity capture technologies in combination with nano-liquid chromatography mass spectrometry, for the identification and characterization of Bp surfaceome proteins.


Subject(s)
Antigens, Bacterial/analysis , Bacterial Outer Membrane Proteins/analysis , Bordetella pertussis/isolation & purification , Proteomics/methods , Amino Acid Sequence , Antibody Affinity/immunology , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Bordetella pertussis/immunology , Buffers , Carbonates/chemistry , Chromatography, Liquid , Databases, Protein , Immunoprecipitation/methods , Tandem Mass Spectrometry
5.
Genome Announc ; 4(6)2016 Dec 22.
Article in English | MEDLINE | ID: mdl-28007855

ABSTRACT

Serum Institute of India is among the world's largest vaccine producers. Here, we report the complete genome sequences for four Bordetella pertussis strains used by Serum Institute of India in the production of whole-cell pertussis vaccines.

6.
Int J Proteomics ; 2015: 536537, 2015.
Article in English | MEDLINE | ID: mdl-26090226

ABSTRACT

Bordetella pertussis (Bp) is the etiologic agent of pertussis (whooping cough), a highly communicable infection. Although pertussis is vaccine preventable, in recent years there has been increased incidence, despite high vaccine coverage. Possible reasons for the rise in cases include the following: Bp strain adaptation, waning vaccine immunity, increased surveillance, and improved clinical diagnostics. A pertussis outbreak impacted California (USA) in 2010; children and preadolescents were the most affected but the burden of disease fell mainly on infants. To identify protein biomarkers associated with this pertussis outbreak, we report a whole cellular protein characterization of six Bp isolates plus the pertussis acellular vaccine strain Bp Tohama I (T), utilizing gel-free proteomics-based mass spectrometry (MS). MS/MS tryptic peptide detection and protein database searching combined with western blot analysis revealed three Bp isolates in this study had markedly reduced detection of pertactin (Prn), a subunit of pertussis acellular vaccines. Additionally, antibody affinity capture technologies were implemented using anti-Bp T rabbit polyclonal antisera and whole cellular proteins to identify putative immunogens. Proteome profiling could shed light on pathogenesis and potentially lay the foundation for reduced infection transmission strategies and improved clinical diagnostics.

7.
Toxicon ; 95: 72-83, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25576235

ABSTRACT

The seeds of the Ricinus communis (Castor bean) plant are the source of the economically important commodity castor oil. Castor seeds also contain the proteins ricin and R. communis agglutinin (RCA), two toxic lectins that are hazardous to human health. Radial immunodiffusion (RID) and the enzyme linked immunosorbent assay (ELISA) are two antibody-based methods commonly used to quantify ricin and RCA; however, antibodies currently used in these methods cannot distinguish between ricin and RCA due to the high sequence homology of the respective proteins. In this study, a technique combining antibody-based affinity capture with liquid chromatography and multiple reaction monitoring (MRM) mass spectrometry (MS) was used to quantify the amounts of ricin and RCA independently in extracts prepared from the seeds of eighteen representative cultivars of R. communis which were propagated under identical conditions. Additionally, liquid chromatography and MRM-MS was used to determine rRNA N-glycosidase activity for each cultivar and the overall activity in these cultivars was compared to a purified ricin standard. Of the cultivars studied, the average ricin content was 9.3 mg/g seed, the average RCA content was 9.9 mg/g seed, and the enzymatic activity agreed with the activity of a purified ricin reference within 35% relative activity.


Subject(s)
Plant Lectins/chemistry , Ricin/chemistry , Ricinus communis/chemistry , Ricinus communis/enzymology , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Glycoside Hydrolases/metabolism , Immunoassay , Plant Extracts/chemistry , Seeds/chemistry , Tandem Mass Spectrometry
8.
Int J Proteomics ; 2013: 293782, 2013.
Article in English | MEDLINE | ID: mdl-24066231

ABSTRACT

Clostridium difficile is the leading cause of antibiotic-associated diarrhea in hospitals worldwide, due to hypervirulent epidemic strains with the ability to produce increased quantities of the large toxins TcdA and TcdB. Unfortunately, accurate quantification of TcdA and TcdB from different toxinotypes using small samples has not yet been reported. In the present study, we quantify C. difficile toxins in <0.1 mL of culture filtrate by quantitative label-free mass spectrometry (MS) using data-independent analysis (MS(E)). In addition, analyses of both purified TcdA and TcdB as well as a standard culture filtrate were performed using gel-based and gel-independent proteomic platforms. Gel-based proteomic analysis was then used to generate basic information on toxin integrity and provided sequence confirmation. Gel-independent in-solution digestion of both toxins using five different proteolytic enzymes with MS analysis generated broad amino acid sequence coverage (91% for TcdA and 95% for TcdB). Proteomic analysis of a culture filtrate identified a total of 101 proteins, among them TcdA, TcdB, and S-layer proteins.

9.
J Microbiol Methods ; 90(2): 119-33, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22537821

ABSTRACT

Bordetella pertussis (Bp) is the etiologic agent of pertussis or whooping cough, a highly contagious respiratory disease occurring primarily in infants and young children. Although vaccine preventable, pertussis cases have increased over the years leading researchers to re-evaluate vaccine control strategies. Since bacterial outer membrane proteins, comprising the surfaceome, often play roles in pathogenesis and antibody-mediated immunity, three recent Bp circulating isolates were examined using proteomics to identify any potential changes in surface protein expression. Fractions enriched for outer membrane proteins were digested with trypsin and the peptides analyzed by nano liquid chromatography-electrospray ionization-mass spectrometry (nLC-ESI-MS), followed by database analysis to elucidate the surfaceomes of our three Bp isolates. Furthermore, a less labor intensive non-gel based antibody affinity capture technology in conjunction with MS was employed to assess each Bp strains' immunogenic outer membrane proteins. This novel technique is generally applicable allowing for the identification of immunogenic surface expressed proteins on pertussis and other pathogenic bacteria.


Subject(s)
Bacterial Proteins/analysis , Bordetella pertussis/chemistry , Proteome/analysis , Proteomics/methods , Whooping Cough/microbiology , Animals , Antibodies, Bacterial/metabolism , Antigens, Bacterial/isolation & purification , Antigens, Bacterial/metabolism , Bacterial Proteins/isolation & purification , Bordetella pertussis/isolation & purification , Child, Preschool , Chromatography, Liquid/methods , Computational Biology/methods , Female , Humans , Infant , Mice , Mice, Inbred BALB C , Protein Binding , Proteome/isolation & purification , Spectrometry, Mass, Electrospray Ionization/methods
10.
J Proteomics ; 75(6): 1966-72, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22245551

ABSTRACT

Mass spectrometry (MS) coupled with 1-D and 2-D electrophoresis can be utilized to detect and identify immunogenic proteins, but these methods are laborious and time-consuming. We describe an alternative, simple, rapid gel-free strategy to identify multiple immunogenic proteins from Bordetella pertussis (Bp). It couples immunoprecipitation to nano liquid chromatography- tandem mass spectrometry (IP-nLC-MS/MS) and is significantly both time- and labor-saving. We developed a gel-free magnetic bead-based immunoprecipitation (IP) method using different NP-40/PBS concentrations in which solubilized proteins of Bp Tohama I membrane fractions were precipitated with polyclonal rabbit anti-Bp whole cell immune sera. Immune complexes were analyzed by MS and Scaffold analysis (>95% protein identification probability). Total immunoproteins identified were 50, 63 and 49 for 0.90%, 0.45% and 0.22% NP-40/PBS buffer concentrations respectively. Known Bp proteins identified included pertactin, serotype 2 fimbrial subunit and filamentous hemagglutinin. As proof of concept that this gel-free protein immunoprecipitation method enabled the capture of multiple immunogenic proteins, IP samples were also analyzed by SDS-PAGE and immunoblotting. Bypassing gels and subjecting immunoprecipitated proteins directly to MS is a simple and rapid antigen identification method with relatively high throughput. IP-nLC-MS/MS provides a novel alternative approach for current methods used for the identification of immunogenic proteins.


Subject(s)
Antigens, Bacterial/isolation & purification , Bacterial Proteins/isolation & purification , Bordetella pertussis/immunology , Animals , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Immunoprecipitation/methods , Nanotechnology , Proteomics/methods , Rabbits , Tandem Mass Spectrometry
11.
J Biomed Biotechnol ; 2010: 942365, 2010.
Article in English | MEDLINE | ID: mdl-20508854

ABSTRACT

Bordetella pertussis (Bp) is the causative agent of pertussis, a vaccine preventable disease occurring primarily in children. In recent years, there has been increased reporting of pertussis. Current pertussis vaccines are acellular and consist of Bp proteins including the major virulence factor pertussis toxin (Ptx), a 5-subunit exotoxin. Variation in Ptx subunit amino acid (AA) sequence could possibly affect the immune response. A blind comparative mass spectrometric (MS) analysis of commercially available Ptx as well as the chemically modified toxoid (Ptxd) from licensed vaccines was performed to assess peptide sequence and AA coverage variability as well as relative amounts of Ptx subunits. Qualitatively, there are similarities among the various sources based on AA percent coverages and MS/MS fragmentation profiles. Additionally, based on a label-free mass spectrometry-based quantification method there is differential relative abundance of the subunits among the sources.

12.
Appl Environ Microbiol ; 74(19): 5891-7, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18708515

ABSTRACT

Streptococcus pneumoniae (pneumococcus [Pnc]) is a causative agent of many infectious diseases, including pneumonia, septicemia, otitis media, and conjunctivitis. There have been documented conjunctivitis outbreaks in which nontypeable (NT), nonencapsulated Pnc has been identified as the etiological agent. The use of mass spectrometry to comparatively and differentially analyze protein and peptide profiles of whole-cell microorganisms remains somewhat uncharted. In this report, we discuss a comparative proteomic analysis between NT S. pneumoniae conjunctivitis outbreak strains (cPnc) and other known typeable or NT pneumococcal and streptococcal isolates (including Pnc TIGR4 and R6, Streptococcus oralis, Streptococcus mitis, Streptococcus pseudopneumoniae, and Streptococcus pyogenes) and nonstreptococcal isolates (including Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus) as controls. cPnc cells and controls were grown to mid-log phase, harvested, and subsequently treated with a 10% trifluoroacetic acid-sinapinic acid matrix mixture. Protein and peptide fragments of the whole-cell bacterial isolate-matrix combinations ranging in size from 2 to 14 kDa were evaluated by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Additionally Random Forest analytical tools and dendrogramic representations (Genesis) suggested similarities and clustered the isolates into distinct clonal groups, respectively. Also, a peak list of protein and peptide masses was obtained and compared to a known Pnc protein mass library, in which a peptide common and unique to cPnc isolates was tentatively identified. Information gained from this study will lead to the identification and validation of proteins that are commonly and exclusively expressed in cPnc strains which could potentially be used as a biomarker in the rapid diagnosis of pneumococcal conjunctivitis.


Subject(s)
Conjunctivitis/microbiology , Disease Outbreaks , Pneumococcal Infections/microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Streptococcus pneumoniae/chemistry , Streptococcus pneumoniae/classification , Bacterial Proteins/analysis , Bacterial Typing Techniques/methods , Cluster Analysis , Conjunctivitis/epidemiology , Enterococcus faecalis/chemistry , Escherichia coli/chemistry , Humans , Molecular Epidemiology/methods , Molecular Weight , Pneumococcal Infections/epidemiology , Proteome/analysis , Staphylococcus aureus/chemistry , Streptococcus mitis/chemistry , Streptococcus oralis/chemistry , Streptococcus pneumoniae/isolation & purification , Streptococcus pyogenes/chemistry
13.
Microb Pathog ; 44(3): 175-85, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17936571

ABSTRACT

Conjunctivitis outbreaks have occurred in the US in which nontypeable (NT) Streptococcus pneumoniae (Pnc) strains have been identified as the etiologic agent; however, the pathogenesis of Pnc conjunctivitis has not been extensively evaluated. Here we assessed the adhesive and invasive properties of 13 NT US conjunctivitis outbreak strains (cPnc) using an immortalized human conjunctival epithelial cell (HCjE) line expressing high or low levels of mucin as a surrogate for in vivo ocular surface events. Studies reveal differential binding efficiencies (up to 18-fold) among cPnc strains to HCjE cells and reduced or little adherence efficiency to high mucin-expressing (HME-HCjE). Additionally, in the presence of exogenous mucin there is considerable inhibition (20% to approximately 100%) of bacterial binding to the HCjE cells. Invasion assays suggest that the cPnc are internalized in HCjE, and less in HME-HCjE cells. Microarray analysis of cPnc isolates revealed an up-regulation of Pnc neuraminidases, and treatment of HME-HCjE cells with exogenous neuraminidase resulted in a 2-13-fold enhancement in cPnc binding. The results indicate that mucin acts as a protective barrier in vitro and that neuraminidases, which can degrade mucin, may be contributing factors leading to bacterial adherence, a first step in the pathogenesis of this transmissible infection.


Subject(s)
Bacterial Adhesion/physiology , Conjunctiva/cytology , Epithelial Cells/microbiology , Streptococcus pneumoniae/physiology , Streptococcus pneumoniae/pathogenicity , Cell Line , Conjunctivitis/microbiology , Disease Outbreaks , Epithelial Cells/metabolism , Humans , Mucins/genetics , Mucins/metabolism , Streptococcus pneumoniae/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...