Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
JCO Precis Oncol ; 8: e2300348, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38513168

ABSTRACT

PURPOSE: Poly(ADP-ribose) polymerase inhibitors (PARPi) have shown promising clinical results in the treatment of ovarian cancer. Analysis of biomarker subgroups consistently revealed higher benefits for patients with homologous recombination deficiency (HRD). The test that is most often used for the detection of HRD in clinical studies is the Myriad myChoice assay. However, other assays can also be used to assess biomarkers, which are indicative of HRD, genomic instability (GI), and BRCA1/2 mutation status. Many of these assays have high potential to be broadly applied in clinical routine diagnostics in a time-effective decentralized manner. Here, we compare the performance of a multitude of alternative assays in comparison with Myriad myChoice in high-grade serous ovarian cancer (HGSOC). METHODS: DNA from HGSOC samples was extracted from formalin-fixed paraffin-embedded tissue blocks of cases previously run with the Myriad myChoice assay, and GI was measured by multiple molecular assays (CytoSNP, AmoyDx, Illumina TSO500 HRD, OncoScan, NOGGO GISv1, QIAseq HRD Panel and whole genome sequencing), applying different bioinformatics algorithms. RESULTS: Application of different assays to assess GI, including Myriad myChoice, revealed high concordance of the generated scores ranging from very substantial to nearly perfect fit, depending on the assay and bioinformatics pipelines applied. Interlaboratory comparison of assays also showed high concordance of GI scores. CONCLUSION: Assays for GI assessment not only show a high concordance with each other but also in correlation with Myriad myChoice. Thus, almost all of the assays included here can be used effectively to assess HRD-associated GI in the clinical setting. This is important as PARPi treatment on the basis of these tests is compliant with European Medicines Agency approvals, which are methodologically not test-bound.


Subject(s)
BRCA1 Protein , Ovarian Neoplasms , Humans , Female , BRCA1 Protein/genetics , Mutation , BRCA2 Protein/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Genomic Instability/genetics , Homologous Recombination/genetics
2.
Curr Oncol ; 30(10): 8805-8814, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37887535

ABSTRACT

EGFR-mutant lung cancers develop a wide range of potential resistance alterations under therapy with the third-generation EGFR tyrosine kinase inhibitor osimertinib. MET amplification ranks among the most common acquired resistance alterations and is currently being investigated as a therapeutic target in several studies. Nevertheless, targeted therapy of MET might similarly result in acquired resistance by point mutations in MET, which further expands therapeutic and diagnostic challenges. Here, we report a 50-year-old male patient with EGFR-mutant lung adenocarcinoma and stepwise acquired resistance by a focal amplification of MET followed by D1246N (D1228N), D1246H (D1228H), and L1213V (L1195V) point mutations in MET, all detected by NGS. The patient successfully responded to the combined and sequential treatment of osimertinib, osimertinib/crizotinib, and third-line osimertinib/cabozantinib. This case highlights the importance of well-designed, sequential molecular diagnostic analyses and the personalized treatment of patients with acquired resistance.


Subject(s)
Lung Neoplasms , Humans , Male , Middle Aged , Crizotinib/therapeutic use , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors/adverse effects , Proto-Oncogene Proteins c-met/genetics
3.
Cancers (Basel) ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37444554

ABSTRACT

The worldwide approval of the combination maintenance therapy of olaparib and bevacizumab in advanced high-grade serous ovarian cancer requires complex molecular diagnostic assays that are sufficiently robust for the routine detection of driver mutations in homologous recombination repair (HRR) genes and genomic instability (GI), employing formalin-fixed (FFPE) paraffin-embedded tumor samples without matched normal tissue. We therefore established a DNA-based hybrid capture NGS assay and an associated bioinformatic pipeline that fulfils our institution's specific needs. The assay´s target regions cover the full exonic territory of relevant cancer-related genes and HRR genes and more than 20,000 evenly distributed single nucleotide polymorphism (SNP) loci to allow for the detection of genome-wide allele specific copy number alterations (CNA). To determine GI status, we implemented an %CNA score that is robust across a broad range of tumor cell content (25-85%) often found in routine FFPE samples. The assay was established using high-grade serous ovarian cancer samples for which BRCA1 and BRCA2 mutation status as well as Myriad MyChoice homologous repair deficiency (HRD) status was known. The NOGGO (Northeastern German Society for Gynecologic Oncology) GIS (GI-Score) v1 assay was clinically validated on more than 400 samples of the ENGOT PAOLA-1 clinical trial as part of the European Network for Gynaecological Oncological Trial groups (ENGOT) HRD European Initiative. The "NOGGO GIS v1 assay" performed using highly robust hazard ratios for progression-free survival (PFS) and overall survival (OS), as well a significantly lower dropout rate than the Myriad MyChoice clinical trial assay supporting the clinical utility of the assay. We also provide proof of a modular and scalable routine diagnostic method, that can be flexibly adapted and adjusted to meet future clinical needs, emerging biomarkers, and further tumor entities.

4.
Curr Oncol ; 30(2): 1692-1698, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36826091

ABSTRACT

HER2-targeted therapy is currently the subject of several studies in lung cancer and other solid tumors using either tyrosine kinase inhibitors (TKI) or targeted-antibody-drug conjugates. We describe a 61-year-old female patient with HER2 mutated adenocarcinoma of the lungs who received chemo-immunotherapy, followed by trastuzumab deruxtecan (T-DXd) and third-line Ramucirumab/Docetaxel at disease progression. Plasma ctDNA monitoring was obtained at 12 timepoints during therapy and revealed HER2 mutation allele frequencies that corresponded to the clinical course of disease. HER2-targeted T-DXd therapy resulted in a profound clinical response and may be an option for NSCLC patients carrying an activated HER2 mutation. Longitudinal liquid biopsy quantification of the underlying driver alteration can serve as a powerful diagnostic tool to monitor course of therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immunoconjugates , Lung Neoplasms , Female , Humans , Middle Aged , Receptor, ErbB-2/genetics , Antibodies, Monoclonal, Humanized/therapeutic use , Immunoconjugates/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Liquid Biopsy
5.
J Pers Med ; 11(8)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34442335

ABSTRACT

For many years, the risk-based therapy stratification of children with neuroblastoma has relied on clinical and molecular covariates. In recent years, genome analysis has revealed further alterations defining risk, tumor biology, and therapeutic targets. The implementation of a robust and scalable method for analyzing traditional and new molecular markers in routine diagnostics is an urgent clinical need. Here, we investigated targeted panel sequencing as a diagnostic approach to analyze all relevant genomic neuroblastoma risk markers in one assay. Our "neuroblastoma hybrid capture sequencing panel" (NB-HCSP) assay employs a technology for the high-coverage sequencing (>1000×) of 55 selected genes and neuroblastoma-relevant genomic regions, which allows for the detection of single nucleotide changes, structural rearrangements, and copy number alterations. We validated our assay by analyzing 15 neuroblastoma cell lines and a cohort of 20 neuroblastomas, for which reference routine diagnostic data and genome sequencing data were available. We observed a high concordance for risk markers identified by the NB-HSCP assay, clinical routine diagnostics, and genome sequencing. Subsequently, we demonstrated clinical applicability of the NB-HCSP assay by analyzing routine clinical samples. We conclude that the NB-HCSP assay may be implemented into routine diagnostics as a single assay that covers all essential covariates for initial neuroblastoma classification, extended risk stratification, and targeted therapy selection.

6.
Cancers (Basel) ; 12(6)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599951

ABSTRACT

In recent years, Non-small cell lung cancer (NSCLC) has evolved into a prime example for precision oncology with multiple FDA-approved "precision" drugs. For the majority of NSCLC lacking targetable genetic alterations, immune checkpoint inhibition (ICI) has become standard of care in first-line treatment or beyond. PD-L1 tumor expression represents the only approved predictive biomarker for PD-L1/PD-1 checkpoint inhibition by therapeutic antibodies. Since PD-L1-negative or low-expressing tumors may also respond to ICI, additional factors are likely to contribute in addition to PD-L1 expression. Tumor mutation burden (TMB) has emerged as a potential candidate; however, it is the most complex biomarker so far and might represent a challenge for routine diagnostics. We therefore established a hybrid capture (HC) next-generation sequencing (NGS) assay that covers all oncogenic driver alterations as well as TMB and validated TMB values by correlation with the assay (F1CDx) used for the CheckMate 227 study. Results of the first consecutive 417 patients analyzed in a routine clinical setting are presented. Data show that fast reliable comprehensive diagnostics including TMB and targetable alterations are obtained with a short turn-around time. Thus, even complex biomarkers can easily be implemented in routine practice to optimize treatment decisions for advanced NSCLC.

7.
Plant J ; 102(3): 493-506, 2020 05.
Article in English | MEDLINE | ID: mdl-31821649

ABSTRACT

Many conflicting hypotheses regarding the relationships among crops and wild species closely related to wheat (the genera Aegilops, Amblyopyrum, and Triticum) have been postulated. The contribution of hybridization to the evolution of these taxa is intensely discussed. To determine possible causes for this, and provide a phylogeny of the diploid taxa based on genome-wide sequence information, independent data were obtained from genotyping-by-sequencing and a target-enrichment experiment that returned 244 low-copy nuclear loci. The data were analyzed using Bayesian, likelihood and coalescent-based methods. D statistics were used to test if incomplete lineage sorting alone or together with hybridization is the source for incongruent gene trees. Here we present the phylogeny of all diploid species of the wheat wild relatives. We hypothesize that most of the wheat-group species were shaped by a primordial homoploid hybrid speciation event involving the ancestral Triticum and Am. muticum lineages to form all other species except Ae. speltoides. This hybridization event was followed by multiple introgressions affecting all taxa except Triticum. Mostly progenitors of the extant species were involved in these processes, while recent interspecific gene flow seems insignificant. The composite nature of many genomes of wheat-group taxa results in complicated patterns of diploid contributions when these lineages are involved in polyploid formation, which is, for example, the case for tetraploid and hexaploid wheats. Our analysis provides phylogenetic relationships and a testable hypothesis for the genome compositions in the basic evolutionary units within the wheat group of Triticeae.


Subject(s)
Genome, Plant/genetics , Hybridization, Genetic/physiology , Triticum/genetics , Bayes Theorem , Diploidy , Hybridization, Genetic/genetics , Phylogeny
8.
Nat Plants ; 5(8): 846-855, 2019 08.
Article in English | MEDLINE | ID: mdl-31358959

ABSTRACT

Comparative genomics can unravel the genetic basis of species differences; however, successful reports on quantitative traits are still scarce. Here we present genome assemblies of 31 so-far unassembled Brassicaceae plant species and combine them with 16 previously published assemblies to establish the Brassicaceae Diversity Panel. Using a new interspecies association strategy for quantitative traits, we found a so-far unknown association between the unexpectedly high variation in CG to TG substitution rates in genes and the absence of CHROMOMETHYLASE3 (CMT3) orthologues. Low substitution rates were associated with the loss of CMT3, while species with conserved CMT3 orthologues showed high substitution rates. Species without CMT3 also lacked gene-body methylation (gbM), suggesting an evolutionary trade-off between the unknown function of gbM and low substitution rates in Brassicaceae, possibly due to low mutability of non-methylated cytosines.


Subject(s)
Brassicaceae/genetics , Genome, Plant , Nucleotides/genetics , Brassicaceae/classification , Brassicaceae/metabolism , Chromosome Mapping , Cytosine , Genetic Association Studies , Genomics , Guanine , Methylation , Phylogeny , Quantitative Trait Loci , Thymine
9.
Proc Natl Acad Sci U S A ; 116(24): 12078-12083, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31123146

ABSTRACT

The genetic and molecular analysis of trichome development in Arabidopsis thaliana has generated a detailed knowledge about the underlying regulatory genes and networks. However, how rapidly these mechanisms diverge during evolution is unknown. To address this problem, we used an unbiased forward genetic approach to identify most genes involved in trichome development in the related crucifer species Arabisalpina In general, we found most trichome mutant classes known in A. thaliana We identified orthologous genes of the relevant A. thaliana genes by sequence similarity and synteny and sequenced candidate genes in the A. alpina mutants. While in most cases we found a highly similar gene-phenotype relationship as known from Arabidopsis, there were also striking differences in the regulation of trichome patterning, differentiation, and morphogenesis. Our analysis of trichome patterning suggests that the formation of two classes of trichomes is regulated differentially by the homeodomain transcription factor AaGL2 Moreover, we show that overexpression of the GL3 basic helix-loop-helix transcription factor in A. alpina leads to the opposite phenotype as described in A. thaliana Mathematical modeling helps to explain how this nonintuitive behavior can be explained by different ratios of GL3 and GL1 in the two species.


Subject(s)
Arabis/genetics , Trichomes/genetics , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Plant/genetics , Morphogenesis/genetics , Mutation/genetics , Phenotype , Transcription Factors/genetics
10.
Plant Cell ; 30(11): 2838-2854, 2018 11.
Article in English | MEDLINE | ID: mdl-30309899

ABSTRACT

Introns are removed by the spliceosome, a large macromolecular complex composed of five ribonucleoprotein subcomplexes (U snRNPs). The U1 snRNP, which binds to 5' splice sites, plays an essential role in early steps of the splicing reaction. Here, we show that Arabidopsis thaliana LETHAL UNLESS CBC7 (LUC7) proteins, which are encoded by a three-member gene family in Arabidopsis, are important for plant development and stress resistance. We show that LUC7 is a U1 snRNP accessory protein by RNA immunoprecipitation experiments and LUC7 protein complex purifications. Transcriptome analyses revealed that LUC7 proteins are not only important for constitutive splicing, but also affect hundreds of alternative splicing events. Interestingly, LUC7 proteins specifically promote splicing of a subset of terminal introns. Splicing of LUC7-dependent introns is a prerequisite for nuclear export, and some splicing events are modulated by stress in a LUC7-dependent manner. Taken together, our results highlight the importance of the U1 snRNP component LUC7 in splicing regulation and suggest a previously unrecognized role of a U1 snRNP accessory factor in terminal intron splicing.


Subject(s)
Ribonucleoprotein, U1 Small Nuclear/metabolism , Spliceosomes/metabolism , Alternative Splicing/genetics , Alternative Splicing/physiology , Arabidopsis/genetics , Arabidopsis/metabolism , Introns/genetics , Introns/physiology , Protein Binding/genetics , Protein Binding/physiology , RNA Splicing/genetics , RNA Splicing/physiology
11.
Genome Res ; 27(5): 778-786, 2017 05.
Article in English | MEDLINE | ID: mdl-28159771

ABSTRACT

Long-read sequencing can overcome the weaknesses of short reads in the assembly of eukaryotic genomes; however, at present additional scaffolding is needed to achieve chromosome-level assemblies. We generated Pacific Biosciences (PacBio) long-read data of the genomes of three relatives of the model plant Arabidopsis thaliana and assembled all three genomes into only a few hundred contigs. To improve the contiguities of these assemblies, we generated BioNano Genomics optical mapping and Dovetail Genomics chromosome conformation capture data for genome scaffolding. Despite their technical differences, optical mapping and chromosome conformation capture performed similarly and doubled N50 values. After improving both integration methods, assembly contiguity reached chromosome-arm-levels. We rigorously assessed the quality of contigs and scaffolds using Illumina mate-pair libraries and genetic map information. This showed that PacBio assemblies have high sequence accuracy but can contain several misassemblies, which join unlinked regions of the genome. Most, but not all, of these misjoints were removed during the integration of the optical mapping and chromosome conformation capture data. Even though none of the centromeres were fully assembled, the scaffolds revealed large parts of some centromeric regions, even including some of the heterochromatic regions, which are not present in gold standard reference sequences.


Subject(s)
Chromosomes, Plant/chemistry , Contig Mapping/methods , Genome, Plant , Genomics/methods , Software , Arabidopsis/genetics , Chromosomes, Plant/genetics , Contig Mapping/standards , Genomics/standards
12.
Nat Commun ; 7: 13522, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27905394

ABSTRACT

Ground levels of solar UV-B radiation induce DNA damage. Sessile phototrophic organisms such as vascular plants are recurrently exposed to sunlight and require UV-B photoreception, flavonols shielding, direct reversal of pyrimidine dimers and nucleotide excision repair for resistance against UV-B radiation. However, the frequency of UV-B-induced mutations is unknown in plants. Here we quantify the amount and types of mutations in the offspring of Arabidopsis thaliana wild-type and UV-B-hypersensitive mutants exposed to simulated natural UV-B over their entire life cycle. We show that reversal of pyrimidine dimers by UVR2 photolyase is the major mechanism required for sustaining plant genome stability across generations under UV-B. In addition to widespread somatic expression, germline-specific UVR2 activity occurs during late flower development, and is important for ensuring low mutation rates in male and female cell lineages. This allows plants to maintain genome integrity in the germline despite exposure to UV-B.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/radiation effects , Deoxyribodipyrimidine Photo-Lyase/metabolism , Genomic Instability , Ultraviolet Rays , Arabidopsis/growth & development , DNA Methylation/genetics , Germ-Line Mutation , Models, Biological , Mutagenesis/genetics
13.
Proc Natl Acad Sci U S A ; 113(32): 9111-6, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27457936

ABSTRACT

In plants, CG DNA methylation is prevalent in the transcribed regions of many constitutively expressed genes (gene body methylation; gbM), but the origin and function of gbM remain unknown. Here we report the discovery that Eutrema salsugineum has lost gbM from its genome, to our knowledge the first instance for an angiosperm. Of all known DNA methyltransferases, only CHROMOMETHYLASE 3 (CMT3) is missing from E. salsugineum Identification of an additional angiosperm, Conringia planisiliqua, which independently lost CMT3 and gbM, supports that CMT3 is required for the establishment of gbM. Detailed analyses of gene expression, the histone variant H2A.Z, and various histone modifications in E. salsugineum and in Arabidopsis thaliana epigenetic recombinant inbred lines found no evidence in support of any role for gbM in regulating transcription or affecting the composition and modification of chromatin over evolutionary timescales.


Subject(s)
DNA Methylation , Evolution, Molecular , Magnoliopsida/genetics , DNA (Cytosine-5-)-Methyltransferases/physiology , Histones/metabolism
14.
Proc Natl Acad Sci U S A ; 113(28): E4052-60, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27354520

ABSTRACT

Resequencing or reference-based assemblies reveal large parts of the small-scale sequence variation. However, they typically fail to separate such local variation into colinear and rearranged variation, because they usually do not recover the complement of large-scale rearrangements, including transpositions and inversions. Besides the availability of hundreds of genomes of diverse Arabidopsis thaliana accessions, there is so far only one full-length assembled genome: the reference sequence. We have assembled 117 Mb of the A. thaliana Landsberg erecta (Ler) genome into five chromosome-equivalent sequences using a combination of short Illumina reads, long PacBio reads, and linkage information. Whole-genome comparison against the reference sequence revealed 564 transpositions and 47 inversions comprising ∼3.6 Mb, in addition to 4.1 Mb of nonreference sequence, mostly originating from duplications. Although rearranged regions are not different in local divergence from colinear regions, they are drastically depleted for meiotic recombination in heterozygotes. Using a 1.2-Mb inversion as an example, we show that such rearrangement-mediated reduction of meiotic recombination can lead to genetically isolated haplotypes in the worldwide population of A. thaliana Moreover, we found 105 single-copy genes, which were only present in the reference sequence or the Ler assembly, and 334 single-copy orthologs, which showed an additional copy in only one of the genomes. To our knowledge, this work gives first insights into the degree and type of variation, which will be revealed once complete assemblies will replace resequencing or other reference-dependent methods.


Subject(s)
Arabidopsis/genetics , Chromosome Inversion , Chromosomes, Plant , Genomic Structural Variation , Translocation, Genetic , Gene Dosage , Genome, Plant , Haplotypes , Karyotyping
15.
Nat Plants ; 1: 14023, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-27246759

ABSTRACT

Despite evolutionary conserved mechanisms to silence transposable element activity, there are drastic differences in the abundance of transposable elements even among closely related plant species. We conducted a de novo assembly for the 375 Mb genome of the perennial model plant, Arabis alpina. Analysing this genome revealed long-lasting and recent transposable element activity predominately driven by Gypsy long terminal repeat retrotransposons, which extended the low-recombining pericentromeres and transformed large formerly euchromatic regions into repeat-rich pericentromeric regions. This reduced capacity for long terminal repeat retrotransposon silencing and removal in A. alpina co-occurs with unexpectedly low levels of DNA methylation. Most remarkably, the striking reduction of symmetrical CG and CHG methylation suggests weakened DNA methylation maintenance in A. alpina compared with Arabidopsis thaliana. Phylogenetic analyses indicate a highly dynamic evolution of some components of methylation maintenance machinery that might be related to the unique methylation in A. alpina.

16.
Plant Cell ; 26(9): 3680-92, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25217508

ABSTRACT

The WEE1 kinase is an essential cell cycle checkpoint regulator in Arabidopsis thaliana plants experiencing replication defects. Whereas under non-stress conditions WEE1-deficient plants develop normally, they fail to adapt to replication inhibitory conditions, resulting in the accumulation of DNA damage and loss of cell division competence. We identified mutant alleles of the genes encoding subunits of the ribonuclease H2 (RNase H2) complex, known for its role in removing ribonucleotides from DNA-RNA duplexes, as suppressor mutants of WEE1 knockout plants. RNase H2 deficiency triggered an increase in homologous recombination (HR), correlated with the accumulation of γ-H2AX foci. However, as HR negatively impacts the growth of WEE1-deficient plants under replication stress, it cannot account for the rescue of the replication defects of the WEE1 knockout plants. Rather, the observed increase in ribonucleotide incorporation in DNA indicates that the substitution of deoxynucleotide with ribonucleotide abolishes the need for WEE1 under replication stress. Strikingly, increased ribonucleotide incorporation in DNA correlated with the occurrence of small base pair deletions, identifying the RNase H2 complex as an important suppressor of genome instability.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Cell Cycle Checkpoints , Genomic Instability , Protein Serine-Threonine Kinases/metabolism , Ribonuclease H/deficiency , Amino Acid Sequence , Arabidopsis/drug effects , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Base Pairing , Base Sequence , Catalytic Domain , Cell Cycle Checkpoints/drug effects , Genes, Plant , Genomic Instability/drug effects , Hydroxyurea/pharmacology , Molecular Sequence Data , Mutation/genetics , Mutation Rate , Recombination, Genetic/genetics , Ribonuclease H/chemistry , Ribonuclease H/genetics , Ribonuclease H/metabolism , Ribonucleotides/metabolism
17.
Plant J ; 76(3): 433-45, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23941160

ABSTRACT

MicroRNAs (miRNAs) regulate plant development by post-transcriptional regulation of target genes. In Arabidopsis thaliana, DCL1 processes precursors (pri-miRNAs) to miRNA duplexes, which associate with AGO1. Additional proteins act in concert with DCL1 (e.g. HYL1 and SERRATE) or AGO1 to facilitate efficient and precise pri-miRNA processing and miRNA loading, respectively. In this study, we show that the accumulation of plant microRNAs depends on RECEPTOR FOR ACTIVATED C KINASE 1 (RACK1), a scaffold protein that is found in all higher eukaryotes. miRNA levels are reduced in rack1 mutants, and our data suggest that RACK1 affects the microRNA pathway via several distinct mechanisms involving direct interactions with known microRNA factors: RACK1 ensures the accumulation and processing of some pri-miRNAs, directly interacts with SERRATE and is part of an AGO1 complex. As a result, mutations in RACK1 lead to over-accumulation of miRNA target mRNAs, which are important for ABA responses and phyllotaxy, for example. In conclusion, our study identified complex functioning of RACK1 proteins in the Arabidopsis miRNA pathway; these proteins are important for miRNA production and therefore plant development.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Gene Expression Regulation, Plant , MicroRNAs/metabolism , Receptors, Cell Surface/physiology , Arabidopsis Proteins/metabolism , Argonaute Proteins/metabolism , Calcium-Binding Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , MicroRNAs/biosynthesis , RNA Precursors/biosynthesis , RNA-Binding Proteins , Receptors for Activated C Kinase , Serrate-Jagged Proteins
18.
PLoS One ; 7(8): e42649, 2012.
Article in English | MEDLINE | ID: mdl-22905157

ABSTRACT

Population genetic studies provide insights into the evolutionary processes that influence the distribution of sequence variants within and among wild populations. F(ST) is among the most widely used measures for genetic differentiation and plays a central role in ecological and evolutionary genetic studies. It is commonly thought that large sample sizes are required in order to precisely infer F(ST) and that small sample sizes lead to overestimation of genetic differentiation. Until recently, studies in ecological model organisms incorporated a limited number of genetic markers, but since the emergence of next generation sequencing, the panel size of genetic markers available even in non-reference organisms has rapidly increased. In this study we examine whether a large number of genetic markers can substitute for small sample sizes when estimating F(ST). We tested the behavior of three different estimators that infer F(ST) and that are commonly used in population genetic studies. By simulating populations, we assessed the effects of sample size and the number of markers on the various estimates of genetic differentiation. Furthermore, we tested the effect of ascertainment bias on these estimates. We show that the population sample size can be significantly reduced (as small as n = 4-6) when using an appropriate estimator and a large number of bi-allelic genetic markers (k>1,000). Therefore, conservation genetic studies can now obtain almost the same statistical power as studies performed on model organisms using markers developed with next-generation sequencing.


Subject(s)
Models, Genetic , Polymorphism, Single Nucleotide , Alleles , Animals , Ecology , Female , Gene Frequency , Genetic Drift , Genetic Markers , Genetics, Population , Genome , Genotype , Humans , Male , Models, Statistical , Mutation , Sequence Analysis, DNA
19.
PLoS One ; 7(5): e38404, 2012.
Article in English | MEDLINE | ID: mdl-22693621

ABSTRACT

The introduction of non-native species into new habitats poses a major threat to native populations. Of particular interest, though often overlooked, are introductions of populations that are not fully reproductively isolated from native individuals and can hybridize with them. To address this important topic we used different approaches in a multi-pronged study, combining the effects of mate choice, shoaling behaviour and genetics. Here we present evidence that behavioural traits such as shoaling and mate choice can promote population mixing if individuals do not distinguish between native and foreign conspecifics. We examined this in the context of two guppy (Poecilia reticulata) populations that have been subject to an introduction and subsequent population mixing event in Trinidad. The introduction of Guanapo River guppies into the Turure River more than 50 years ago led to a marked reduction of the original genotype. In our experiments, female guppies did not distinguish between shoaling partners when given the choice between native and foreign individuals. Introduced fish are therefore likely to benefit from the protection of a shoal and will improve their survival chances as a result. The additional finding that male guppies do not discriminate between females on the basis of origin will further increase the process of population mixing, especially if males encounter mixed shoals. In a mesocosm experiment, in which the native and foreign populations were allowed to mate freely, we found, as expected on the basis of these behavioural interactions, that the distribution of offspring genotypes could be predicted from the proportions of the two types of founding fish. This result suggests that stochastic and environmental processes have reinforced the biological ones to bring about the genetic dominance of the invading population in the Turure River. Re-sampling the Turure for genetic analysis using SNP markers confirmed the population mixing process and showed that it is an on-going process in this river and has led to the nearly complete disappearance of the original genotype.


Subject(s)
Introduced Species , Poecilia/physiology , Animals , Breeding , Female , Genotype , Geography , Introduced Species/statistics & numerical data , Male , Poecilia/genetics , Sexual Behavior, Animal , Trinidad and Tobago
20.
Bioinformatics ; 27(16): 2187-93, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21712251

ABSTRACT

MOTIVATION: Next-generation sequencing technologies have facilitated the study of organisms on a genome-wide scale. A recent method called restriction site associated DNA sequencing (RAD-seq) allows to sample sequence information at reduced complexity across a target genome using the Illumina platform. Single-end RAD-seq has proven to provide a large number of informative genetic markers in reference as well as non-reference organisms. RESULTS: Here, we present a method for de novo assembly of paired-end RAD-seq data in order to produce extended contigs flanking a restriction site. We were able to reconstruct one-tenth of the guppy genome represented by 200-500 bp contigs associated to EcoRI recognition sites. In addition, these contigs were used as reference allowing the detection of thousands of new polymorphic markers that are informative for mapping and population genetic studies in the guppy. AVAILABILITY: A perl and C++ implementation of the method demonstrated in this article is available under http://guppy.weigelworld.org/weigeldatabases/radMarkers/ as package RApiD. CONTACT: christine.dreyer@tuebingen.mpg.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genetic Markers , Sequence Analysis, DNA/methods , Animals , Chromosome Mapping , Female , Genome , Male , Poecilia/genetics , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...