Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Intern Med ; 285(4): 367-380, 2019 04.
Article in English | MEDLINE | ID: mdl-30478861

ABSTRACT

Cholesterol is an essential molecule for life. It is a component of the cell membrane, and it is a precursor molecule for bile acids, vitamin D and steroid hormones. Cholesterol is actively metabolized, but the impact of endogenous cholesterol metabolites on immune function, especially in the intestine, is poorly understood. In this review, I focus on oxysterols, hydroxylated forms of cholesterol, and their specialized functions in intestinal immunity. Oxysterols act through various intracellular and extracellular receptors and serve as key metabolic signals, coordinating immune activity and inflammation. Our recent work has identified an unexpected link between cholesterol metabolism, innate lymphoid cell function and intestinal homeostasis. We discovered that oxysterol sensing through the G protein-coupled receptor 183 (GPR183) directs the migration of innate lymphoid cells, which is essential for the formation of lymphoid tissue in the colon. Moreover, we found that the interaction of GPR183 with oxysterols regulates intestinal inflammation. I will discuss the therapeutic potential of oxysterols and future possibilities of treating inflammatory bowel disease through the modulation of cholesterol metabolism.


Subject(s)
Inflammation/metabolism , Intestines/immunology , Oxysterols/metabolism , Animals , Humans , Inflammation/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism
2.
Blood ; 97(10): 3138-45, 2001 May 15.
Article in English | MEDLINE | ID: mdl-11342441

ABSTRACT

Transfection of tumor cells with the gene encoding the costimulatory molecule B7-1 (CD80), the ligand for CD28 and cytotoxic T lymphocye antigen-4 on T cells, has been shown to result in potent T-cell-mediated antitumor immunity. As an alternative approach, this study analyzed the costimulatory capacity of a human B7-1 immunoglobulin G (IgG) fusion protein targeted to the cell membrane of human acute myeloid leukemia (AML) blasts. Flow cytometric analysis revealed a low constitutive expression of B7-1 on human AML blasts (on average, 3.0 +/- 4.3%; n = 50). In contrast, the expression of B7-2 (CD86) was highly heterogeneous and higher in AML blasts of French-American-British classification types M4 and M5 (P <.0001). The B7-1 IgG fusion protein used in this study efficiently costimulated the proliferation of resting and preactivated T cells when immobilized on plastic. After preincubation with B7-1 IgG, specific binding of the fusion protein to the high-affinity Fcgammareceptor I (CD64) on leukemic cells was demonstrated and was found to increase the proliferation of both allogeneic and autologous T cells in costimulation experiments. Furthermore, targeting of B7-1 IgG to the tumor membrane resulted in increased proliferation of autologous remission T cells and had the potential to generate an enhanced redirected cytotoxic T-cell response against autologous AML blasts. In summary, the targeting of B7-1 IgG fusion protein described in this study represents a strategy alternative to gene therapy to restore the expression of the costimulatory molecule B7-1 on human AML blasts, thereby enhancing their immunogenicity for autologous T cells. This new approach may have implications for T-cell-mediated immunotherapy in AML.


Subject(s)
B7-1 Antigen/immunology , Cytotoxicity, Immunologic , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Leukemia, Myeloid, Acute/immunology , T-Lymphocytes/immunology , Cell Membrane/immunology , Flow Cytometry , Gene Expression , Humans , Immunotherapy, Adoptive , Lymphocyte Activation , Receptors, IgG/metabolism , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , Transfection , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...