Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Dis ; 2(4): 318-31, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22396884

ABSTRACT

Clinical data and experimental studies in rats have shown that the aged CNS is more susceptible to the proconvulsive effects of the excitotoxic glutamate analogues kainate (KA) and domoate (DA), which bind high-affinity receptors localized at mossy fiber (MF) synapses in the CA3 subregion of the hippocampus. Although decreased renal clearance appears to play a role in the hypersensitivity of the aged hippocampus to systemically-administered DA, it is unclear if the excitability of the CA3 network is also altered with age. Therefore, this study monitored CA3 field potential activity in hippocampal slices from aged and adult male Fischer 344 rats in response to electrical and pharmacological network stimulation targeted to the MF-CA3 circuit. Network challenges with repetitive hilar stimulation or bath application of nanomolar concentrations of KA more readily elicited excitable network activity (e.g. population spike facilitation, multiple population spikes, and epileptiform bursts) in slices from aged vs. adult rats, although basal network excitability was comparable between age groups. Additionally, exposure to 200 nM KA often abolished epileptiform activity and revealed theta or gamma oscillations instead. However, slices from aged rats were less sensitive to the rhythmogenic effects of 200 nM KA. Taken together, these findings suggest that aging decreases the capacity of the CA3 network to constrain the spread of excitability during focal excitatory network challenges.

2.
Epilepsia ; 48(10): 1964-78, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17521341

ABSTRACT

PURPOSE: The elderly have an increased incidence and prevalence for seizure disorders. Further, since up to 50% of these cases have no identifiable antecedent, it has been hypothesized that aging of the central nervous system itself may be epileptogenic. Aged rats, compared to adults, exhibit a greater susceptibility to and severity of seizures associated with hippocampal activation. Whether this aging-related change reflects proconvulsive changes in limbic circuitry is unknown and thus was the focus of this study. METHODS: Hippocampal slices from adult and aged Fischer 344 rats were examined using electrophysiological techniques. The dentate gyrus was our model region since it is involved with both wet-dog shakes and limbic seizures, and it is affected preferentially with age. RESULTS: No differences were noted between groups in field potential activity elicited with low frequency stimulation. In contrast, 5-Hz molecular layer stimulation could evoke multiple population spikes in approximately 40% of aged versus 0% of adult slices. Further, recording in CA3 revealed that this stimulation paradigm could elicit multiple spikes in aged, but not adult, slices that frequently evolved into spontaneous epileptiform bursts. This change in the capacity of the dentate to respond to and filter afferent input was associated with an aging-related decrease in the frequency of spontaneous IPSPs and an increased propensity for large amplitude prolonged EPSPs following disinhibition. CONCLUSIONS: These epileptogenic changes in dentate function and circuitry could contribute to the exacerbated susceptibility for hippocampal seizures in aged rodents, as well as the aging-related decline in spatial learning and memory.


Subject(s)
Aging/physiology , Dentate Gyrus/physiopathology , Epilepsy/physiopathology , Excitatory Postsynaptic Potentials/physiology , Hippocampus/physiopathology , Perforant Pathway/physiopathology , Age Factors , Animals , Disease Models, Animal , Electric Stimulation , Electroencephalography/statistics & numerical data , Epilepsy/diagnosis , Inhibitory Postsynaptic Potentials/physiology , Limbic System/physiopathology , Neural Conduction/physiology , Patch-Clamp Techniques , Rats , Rats, Inbred F344 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...