Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 6(19): 11451-61, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25155111

ABSTRACT

Plasmonic polymers are quasi one-dimensional assemblies of nanoparticles whose optical responses are governed by near-field coupling of localized surface plasmons. Through single particle extinction spectroscopy correlated with electron microscopy, we reveal the effect of the composition of the repeat unit, the chain length, and extent of disorder on the energies, intensities, and line shapes of the collective resonances of individual plasmonic polymers constructed from three different sizes of gold nanoparticles. Our combined experimental and theoretical analysis focuses on the superradiant plasmon mode, which results from the most attractive interactions along the nanoparticle chain and yields the lowest energy resonance in the spectrum. This superradiant mode redshifts with increasing chain length until an infinite chain limit, where additional increases in chain length cause negligible change in the energy of the superradiant mode. We find that, among plasmonic polymers of equal width comprising nanoparticles with different sizes, the onset of the infinite chain limit and its associated energy are dictated by the number of repeat units and not the overall length of the polymer. The intensities and linewidths of the superradiant mode relative to higher energy resonances, however, differ as the size and number of nanoparticles are varied in the plasmonic polymers studied here. These findings provide general guidelines for engineering the energies, intensities, and line shapes of the collective optical response of plasmonic polymers constructed from nanoparticles with sizes ranging from a few tens to one hundred nanometers.

2.
Nano Lett ; 12(8): 3967-72, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22738257

ABSTRACT

We establish the concept of a plasmonic polymer, whose collective optical properties depend on the repeat unit. Experimental and theoretical analyses of the super- and sub- radiant plasmon response of plasmonic polymers comprising repeat units of single nanoparticles or dimers of gold nanoparticles show that (1) the redshift of the lowest energy coupled mode becomes minimal as the chain approaches the infinite chain limit at a length of ∼10 particles, (2) the presence and energy of the modes are sensitive to the geometries of the constituents, that is, repeat unit, but (3) spatial disorder and nanoparticle heterogeneity have only small effects on the super-radiant mode.

3.
Proc Natl Acad Sci U S A ; 108(50): 19879-84, 2011 Dec 13.
Article in English | MEDLINE | ID: mdl-22084069

ABSTRACT

Coupled surface plasmons in one-dimensional assemblies of metal nanoparticles have attracted significant attention because strong interparticle interactions lead to large electromagnetic field enhancements that can be exploited for localizing and amplifying electromagnetic radiation in nanoscale structures. Ohmic loss (i.e., absorption by the metal), however, limits the performance of any application due to nonradiative surface plasmon relaxation. While absorption losses have been studied theoretically, they have not been quantified experimentally for strongly coupled surface plasmons. Here, we report on the ohmic loss in one-dimensional assemblies of gold nanoparticles with small interparticle separations of only a few nanometers and hence strong plasmon coupling. Both the absorption and scattering cross-sections of coupled surface plasmons were determined and compared to electrodynamic simulations. A lower absorption and higher scattering cross-section for coupled surface plasmons compared to surface plasmons of isolated nanoparticles suggest that coupled surface plasmons suffer smaller ohmic losses and therefore act as better antennas. These experimental results provide important insight for the design of plasmonic devices.

4.
ACS Nano ; 4(8): 4657-66, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20614909

ABSTRACT

We have explored the consequences of symmetry breaking on the coupled surface plasmon resonances in individual dimers of gold nanorods using single-particle dark-field scattering spectroscopy and numerical simulations. Pairs of chemically grown nanorods can exhibit wide variation in sizes, gap distances, and relative orientation angles. The combination of single-particle spectroscopy and theoretical analysis allowed us to discern the effects of specific asymmetry-inducing parameters one at a time. The dominant influence of symmetry breaking occurred for longitudinal resonances in strongly coupled nanorods in linear end-to-end configurations. In particular, we found that the normally dark antibonding dimer mode becomes visible when the sizes of the two nanorods are different. In addition, we observed a conductively coupled plasmon mode that was red-shifted by at least 250 nm from the bonding plasmon mode for the corresponding nontouching geometry. Gaining detailed insight into how symmetry breaking influences coupled surface plasmon resonances of individual nanorod dimers is an important step toward the general understanding of the optical properties of assemblies of chemically synthesized nanorods with unavoidable irregularities in size and orientation.

SELECTION OF CITATIONS
SEARCH DETAIL
...