Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mutat Res ; 444(1): 175-80, 1999 Jul 21.
Article in English | MEDLINE | ID: mdl-10477352

ABSTRACT

The clastogenicity of the azo dye Direct Red 2 (DR2) has been investigated using the murine bone marrow micronucleus assay. A potent dose-dependent response was observed following oral gavage of DR2 up to 4 mg/kg, after which significant toxicity to the erythroid compartment was observed. The route of administration had a significant effect on the frequency of micronucleus formation: intraperitoneal injection was approximately two-fold less clastogenic than the equivalent dose delivered orally (p<0.05). The requirement for activation of DR2 by intestinal microflora was indicated by the fact that mice given acid-treated water prior to administration of DR2 showed a significant reduction (40%; p<0.001) in micronucleated polychromatic erythrocyte formation. The implications of these findings for the health and safety of occupationally exposed workers are discussed.


Subject(s)
Azo Compounds/toxicity , Coloring Agents/toxicity , Mutagens/toxicity , Naphthalenesulfonates/toxicity , Animals , Azo Compounds/administration & dosage , Azo Compounds/pharmacokinetics , Biotransformation , Bone Marrow Cells/drug effects , Coloring Agents/administration & dosage , Coloring Agents/pharmacokinetics , Dose-Response Relationship, Drug , Humans , Intestinal Mucosa/metabolism , Intestines/microbiology , Male , Mice , Micronucleus Tests , Mutagens/administration & dosage , Mutagens/pharmacokinetics , Naphthalenesulfonates/administration & dosage , Naphthalenesulfonates/pharmacokinetics , Public Health
2.
J Med Chem ; 41(26): 5265-71, 1998 Dec 17.
Article in English | MEDLINE | ID: mdl-9857094

ABSTRACT

A number of novel guanine derivatives containing heterocyclic moieties at the O6-position have been synthesized using a purine quaternary salt which reacts with alkoxides under mild conditions. Initially O6-substituents were investigated in which the benzene ring of the known agent, O6-benzylguanine, was replaced by unsubstituted heterocyclic rings. The ability of these agents to inactivate the DNA repair protein O6-alkylguanine-DNA alkyltransferase (ATase), both as pure recombinant protein and in the human lymphoblastoid cell line Raji, has been compared with that of O6-benzylguanine. The present paper focuses on O6-substituents with basic rings, and under standard conditions several of them proved more effective than benzyl for inactivation of both recombinant and Raji ATase. Among the pyridine derivatives, the 2-picolyl compound 7 is not very active in contrast to the 3- and 4-picolyl compounds, and this influenced our choice of isomers of other basic ring systems for study. Since halogen substitution in the thiophene ring considerably increased the activity (17 versus 6), similar modifications in the pyridine series were examined. The more polar O6-substituents in this study are on the whole compatible with the stereochemical requirements of the ATase protein, and their pharmacological properties may be valuable in subsequent in vivo investigations, particularly the thenyl (6), 5-thiazolylmethyl (12), 5-bromothenyl (17), and 2-chloro-4-picolyl (21) derivatives.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Guanine/analogs & derivatives , Guanine/chemical synthesis , O(6)-Methylguanine-DNA Methyltransferase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Guanine/chemistry , Guanine/pharmacology , Humans , Recombinant Proteins/antagonists & inhibitors , Tumor Cells, Cultured
3.
Mol Cell Biol ; 18(10): 5828-37, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9742100

ABSTRACT

Alkylpurine-DNA-N-glycosylase (APNG) null mice have been generated by homologous recombination in embryonic stem cells. The null status of the animals was confirmed at the mRNA level by reverse transcription-PCR and by the inability of cell extracts of tissues from the knockout (ko) animals to release 3-methyladenine (3-meA) or 7-methylguanine (7-meG) from 3H-methylated calf thymus DNA in vitro. Following treatment with DNA-methylating agents, increased persistence of 7-meG was found in liver sections of APNG ko mice in comparison with wild-type (wt) mice, demonstrating an in vivo phenotype for the APNG null animals. Unlike other null mutants of the base excision repair pathway, the APNG ko mice exhibit a very mild phenotype, show no outward abnormalities, are fertile, and have an apparently normal life span. Neither a difference in the number of leukocytes in peripheral blood nor a difference in the number of bone marrow polychromatic erythrocytes was found when ko and wt mice were exposed to methylating or chloroethylating agents. These agents also showed similar growth-inhibitory effects in primary embryonic fibroblasts isolated from ko and wt mice. However, treatment with methyl methanesulfonate resulted in three- to fourfold more hprt mutations in splenic T lymphocytes from APNG ko mice than in those from wt mice. These mutations were predominantly single-base-pair changes; in the ko mice, they consisted primarily of AT-->TA and GC-->TA transversions, which most likely are caused by 3-meA and 3- or 7-meG, respectively. These results clearly show an important role for APNG in attenuating the mutagenic effects of N-alkylpurines in vivo.


Subject(s)
DNA Glycosylases , Hypoxanthine Phosphoribosyltransferase/genetics , Methyl Methanesulfonate/toxicity , Mutagens/toxicity , N-Glycosyl Hydrolases/physiology , Animals , Bone Marrow Cells/drug effects , Cells, Cultured , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Erythrocytes/drug effects , Ethylnitrosourea/analogs & derivatives , Ethylnitrosourea/pharmacology , Female , Fibroblasts/drug effects , Guanine/analogs & derivatives , Guanine/metabolism , Leukocyte Count/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Mutation , N-Glycosyl Hydrolases/genetics , N-Glycosyl Hydrolases/metabolism , Temozolomide
4.
Mutat Res ; 416(1-2): 1-10, 1998 Aug 07.
Article in English | MEDLINE | ID: mdl-9725988

ABSTRACT

The murine bone marrow micronucleus assay has been used to examine (1) the potentiation of fotemustine and streptozotocin induced-clastogenicity by the O6-alkylguanine-DNA alkyltransferase (ATase) inactivator O6-benzylguanine (O6-beG) and (2) the level of protection afforded against this potentiation by retrovirus-mediated expression of an O6-beG-resistant mutant of human ATase (haTPA/GA) in mouse bone marrow. Both fotemustine and streptozotocin induced significantly higher levels of micronucleated polychromatic erythrocytes (p < 0.001 for the highest doses studied) compared to those seen in vehicle-treated animals. The number of micronuclei produced by either agent was dramatically elevated by pretreatment with O6-beG (p < 0.001). Furthermore, in myeloablated mice reconstituted with bone marrow expressing the O6-beG-resistant hATPA/GA as a result of retroviral gene transfer, the frequency of micronucleus formation following exposure of mice to otherwise clastogenic doses of fotemustine or streptozotocin, in the presence of O6-beG, wash highly significantly reduced (p < 0.001 for both agents) relative to that in mock transduced controls. These data clearly implicate O6-chloroethyl- and O6-methylguanine as clastogenic lesions in vivo and establish ATase as a major protective mechanism operating to reduce the frequency of such damage. The potentiation of drug induced clastogenicity by O6-beG suggests that the clinical use of this inactivator in combination with O6-alkylating agents, could substantially increase the risk of therapy related malignancy. Nevertheless the use of hATPA/GA as a protective mechanism via gene therapy may overcome this risk.


Subject(s)
Alkylating Agents/pharmacology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , DNA Repair/drug effects , Mutagens/pharmacology , Alkyl and Aryl Transferases/antagonists & inhibitors , Alkyl and Aryl Transferases/genetics , Alkylating Agents/administration & dosage , Animals , Bone Marrow Transplantation , Drug Synergism , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacology , Female , Gene Expression , Guanine/administration & dosage , Guanine/analogs & derivatives , Guanine/pharmacology , Humans , Male , Mice , Micronucleus Tests , Mutagens/administration & dosage , Mutation , Nitrosourea Compounds/administration & dosage , Nitrosourea Compounds/pharmacology , Organophosphorus Compounds/administration & dosage , Organophosphorus Compounds/pharmacology , Streptozocin/administration & dosage , Streptozocin/pharmacology
5.
In Vitro Cell Dev Biol ; 28A(11-12): 773-8, 1992.
Article in English | MEDLINE | ID: mdl-1483967

ABSTRACT

Cultured mouse embryonic stem (ES) cells are used for both in vitro and in vivo studies. The uncommitted pluripotent cells provide a model system with which to study cellular differentiation and development; they can also be used as vectors to carry specific mutations into the mouse genome by homologous recombination. To ensure successful integration into the germ line, competent totipotent diploid ES cell lines are selected using a cell injection bioassay that is both time consuming and technically demanding. The prolonged in vitro culture of rapidly dividing ES cells can lead to accumulated changes and chromosomal abnormalities that will compromise the biological function and abrogate germ line transmission of chimeric mice carrying novel genetic mutations. Such in vitro conditions will vary between individual laboratories; for example, differences in the serums used for maintenance. Using a number of different criteria we attempt in this paper to define the parameters that we found to be key factors for optimization of the biological potential of established ES cell lines. The successful integration into the germ line is dependant on acquiring or deriving a competent totipotent mouse ES diploid cell line. In this paper parameters and criteria are defined which we found to be key factors for the optimization of the biological potential of established ES cell lines.


Subject(s)
Stem Cells/cytology , Animals , Biomarkers/analysis , Cell Differentiation , Cell Division/physiology , Cells, Cultured , Glucose-6-Phosphate , Glucosephosphates/analysis , Isomerases , Karyotyping , Methods , Mice , Stem Cells/enzymology , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...