Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Mol Syst Biol ; 20(5): 573-589, 2024 May.
Article in English | MEDLINE | ID: mdl-38531971

ABSTRACT

Characterising RNA-protein interaction dynamics is fundamental to understand how bacteria respond to their environment. In this study, we have analysed the dynamics of 91% of the Escherichia coli expressed proteome and the RNA-interaction properties of 271 RNA-binding proteins (RBPs) at different growth phases. We find that 68% of RBPs differentially bind RNA across growth phases and characterise 17 previously unannotated proteins as bacterial RBPs including YfiF, a ncRNA-binding protein. While these new RBPs are mostly present in Proteobacteria, two of them are orthologs of human mitochondrial proteins associated with rare metabolic disorders. Moreover, we reveal novel RBP functions for proteins such as the chaperone HtpG, a new stationary phase tRNA-binding protein. For the first time, the dynamics of the bacterial RBPome have been interrogated, showcasing how this approach can reveal the function of uncharacterised proteins and identify critical RNA-protein interactions for cell growth which could inform new antimicrobial therapies.


Subject(s)
Escherichia coli Proteins , Escherichia coli , RNA, Bacterial , RNA-Binding Proteins , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , Proteome/metabolism , Protein Binding , Gene Expression Regulation, Bacterial , Humans
2.
Mol Cell ; 84(4): 687-701.e7, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38266641

ABSTRACT

Molecular chaperones are critical for protein homeostasis and are implicated in several human pathologies such as neurodegeneration and cancer. While the binding of chaperones to nascent and misfolded proteins has been studied in great detail, the direct interaction between chaperones and RNA has not been systematically investigated. Here, we provide the evidence for widespread interaction between chaperones and RNA in human cells. We show that the major chaperone heat shock protein 70 (HSP70) binds to non-coding RNA transcribed by RNA polymerase III (RNA Pol III) such as tRNA and 5S rRNA. Global chromatin profiling revealed that HSP70 binds genomic sites of transcription by RNA Pol III. Detailed biochemical analyses showed that HSP70 alleviates the inhibitory effect of cognate tRNA transcript on tRNA gene transcription. Thus, our study uncovers an unexpected role of HSP70-RNA interaction in the biogenesis of a specific class of non-coding RNA with wider implications in cancer therapeutics.


Subject(s)
HSP70 Heat-Shock Proteins , Neoplasms , Humans , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , RNA , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , RNA, Transfer/genetics , RNA, Untranslated/genetics
3.
Nature ; 625(7993): 189-194, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057663

ABSTRACT

In vitro-transcribed (IVT) mRNAs are modalities that can combat human disease, exemplified by their use as vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IVT mRNAs are transfected into target cells, where they are translated into recombinant protein, and the biological activity or immunogenicity of the encoded protein exerts an intended therapeutic effect1,2. Modified ribonucleotides are commonly incorporated into therapeutic IVT mRNAs to decrease their innate immunogenicity3-5, but their effects on mRNA translation fidelity have not been fully explored. Here we demonstrate that incorporation of N1-methylpseudouridine into mRNA results in +1 ribosomal frameshifting in vitro and that cellular immunity in mice and humans to +1 frameshifted products from BNT162b2 vaccine mRNA translation occurs after vaccination. The +1 ribosome frameshifting observed is probably a consequence of N1-methylpseudouridine-induced ribosome stalling during IVT mRNA translation, with frameshifting occurring at ribosome slippery sequences. However, we demonstrate that synonymous targeting of such slippery sequences provides an effective strategy to reduce the production of frameshifted products. Overall, these data increase our understanding of how modified ribonucleotides affect the fidelity of mRNA translation, and although there are no adverse outcomes reported from mistranslation of mRNA-based SARS-CoV-2 vaccines in humans, these data highlight potential off-target effects for future mRNA-based therapeutics and demonstrate the requirement for sequence optimization.


Subject(s)
Frameshifting, Ribosomal , Pseudouridine , RNA, Messenger , Animals , Humans , Mice , BNT162 Vaccine/adverse effects , BNT162 Vaccine/genetics , BNT162 Vaccine/immunology , Frameshifting, Ribosomal/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Pseudouridine/analogs & derivatives , Pseudouridine/metabolism , Ribosomes/metabolism , Protein Biosynthesis
4.
Nat Methods ; 21(1): 60-71, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38036857

ABSTRACT

Although the subcellular dynamics of RNA and proteins are key determinants of cell homeostasis, their characterization is still challenging. Here we present an integrative framework to simultaneously interrogate the dynamics of the transcriptome and proteome at subcellular resolution by combining two methods: localization of RNA (LoRNA) and a streamlined density-based localization of proteins by isotope tagging (dLOPIT) to map RNA and protein to organelles (nucleus, endoplasmic reticulum and mitochondria) and membraneless compartments (cytosol, nucleolus and cytosolic granules). Interrogating all RNA subcellular locations at once enables system-wide quantification of the proportional distribution of RNA. We obtain a cell-wide overview of localization dynamics for 31,839 transcripts and 5,314 proteins during the unfolded protein response, revealing that endoplasmic reticulum-localized transcripts are more efficiently recruited to cytosolic granules than cytosolic RNAs, and that the translation initiation factor eIF3d is key to sustaining cytoskeletal function. Overall, we provide the most comprehensive overview so far of RNA and protein subcellular localization dynamics.


Subject(s)
Endoplasmic Reticulum , RNA , RNA/genetics , RNA/metabolism , Subcellular Fractions/metabolism , Endoplasmic Reticulum/metabolism , Proteome/analysis
5.
Life Sci Alliance ; 7(2)2024 02.
Article in English | MEDLINE | ID: mdl-38011999

ABSTRACT

EIF4A1 and cofactors EIF4B and EIF4H have been well characterised in cancers, including B cell malignancies, for their ability to promote the translation of oncogenes with structured 5' untranslated regions. However, very little is known of their roles in nonmalignant cells. Using mouse models to delete Eif4a1, Eif4b or Eif4h in B cells, we show that EIF4A1, but not EIF4B or EIF4H, is essential for B cell development and the germinal centre response. After B cell activation in vitro, EIF4A1 facilitates an increased rate of protein synthesis, MYC expression, and expression of cell cycle regulators. However, EIF4A1-deficient cells remain viable, whereas inhibition of EIF4A1 and EIF4A2 by Hippuristanol treatment induces cell death.


Subject(s)
B-Lymphocytes , Eukaryotic Initiation Factor-4A , RNA Helicases , Animals , Mice , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , RNA Helicases/metabolism
6.
Science ; 382(6675): eadf3208, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38060659

ABSTRACT

The ribotoxic stress response (RSR) is a signaling pathway in which the p38- and c-Jun N-terminal kinase (JNK)-activating mitogen-activated protein kinase kinase kinase (MAP3K) ZAKα senses stalling and/or collision of ribosomes. Here, we show that reactive oxygen species (ROS)-generating agents trigger ribosomal impairment and ZAKα activation. Conversely, zebrafish larvae deficient for ZAKα are protected from ROS-induced pathology. Livers of mice fed a ROS-generating diet exhibit ZAKα-activating changes in ribosomal elongation dynamics. Highlighting a role for the RSR in metabolic regulation, ZAK-knockout mice are protected from developing high-fat high-sugar (HFHS) diet-induced blood glucose intolerance and liver steatosis. Finally, ZAK ablation slows animals from developing the hallmarks of metabolic aging. Our work highlights ROS-induced ribosomal impairment as a physiological activation signal for ZAKα that underlies metabolic adaptation in obesity and aging.


Subject(s)
Aging , MAP Kinase Kinase Kinase 3 , Obesity , Reactive Oxygen Species , Ribosomes , Stress, Physiological , Animals , Mice , Aging/metabolism , MAP Kinase Kinase Kinase 3/genetics , MAP Kinase Kinase Kinase 3/metabolism , Obesity/metabolism , Protein Biosynthesis , Reactive Oxygen Species/metabolism , Ribosomes/metabolism , Zebrafish , Mice, Knockout
7.
Cell Death Dis ; 14(11): 725, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37938546

ABSTRACT

Mesothelioma is an aggressive cancer of the mesothelial layer associated with an extensive fibrotic response. The latter is in large part mediated by cancer-associated fibroblasts which mediate tumour progression and poor prognosis. However, understanding of the crosstalk between cancer cells and fibroblasts in this disease is mostly lacking. Here, using co-cultures of patient-derived mesothelioma cell lines and lung fibroblasts, we demonstrate that fibroblast activation is a self-propagated process producing a fibrotic extracellular matrix (ECM) and triggering drug resistance in mesothelioma cells. Following characterisation of mesothelioma cells/fibroblasts signalling crosstalk, we identify several FDA-approved targeted therapies as far more potent than standard-of-care Cisplatin/Pemetrexed in ECM-embedded co-culture spheroid models. In particular, the SRC family kinase inhibitor, Saracatinib, extends overall survival well beyond standard-of-care in a mesothelioma genetically-engineered mouse model. In short, we lay the foundation for the rational design of novel therapeutic strategies targeting mesothelioma/fibroblast communication for the treatment of mesothelioma patients.


Subject(s)
Cancer-Associated Fibroblasts , Mesothelioma, Malignant , Mesothelioma , Animals , Mice , Humans , Mesothelioma/drug therapy , Mesothelioma/genetics , Fibroblasts , Lung
8.
Environ Int ; 178: 108047, 2023 08.
Article in English | MEDLINE | ID: mdl-37419058

ABSTRACT

The purpose of this study was to identify a characteristic elemental tyre fingerprint that can be utilised in atmospheric source apportionment calculations. Currently zinc is widely used as a single element tracer to quantify tyre wear, however several authors have highlighted issues with this approach. To overcome this, tyre rubber tread was digested and has been analysed for 25 elements by ICP-MS to generate a multielement profile. Additionally, to estimate the percentage of the tyre made up of inert fillers, thermogravimetric analysis was performed on a subset. Comparisons were made between passenger car and heavy goods vehicle tyre composition, and a subset of tyres had both tread and sidewall sampled for further comparison. 19 of the 25 elements were detected in the analysis. The mean mass fraction of zinc detected was 11.17 g/kg, consistent with previous estimates of 1% of the tyre mass. Aluminium, iron, and magnesium were found to be the next most abundant elements. Only one source profile for tyre wear exists in both the US and EU air pollution species profile databases, highlighting the need for more recent data with better coverage of tyre makes and models. This study provides data on new tyres which are currently operating on-road in Europe and is therefore relevant for ongoing atmospheric studies assessing the levels of tyre wear particles in urban areas.


Subject(s)
Air Pollution , Rubber , Rubber/analysis , Environmental Monitoring , Air Pollution/analysis , Zinc/analysis , Motor Vehicles
9.
PLoS One ; 18(6): e0286741, 2023.
Article in English | MEDLINE | ID: mdl-37279202

ABSTRACT

Most of the small-molecule drugs approved for the treatment of cancer over the past 40 years are based on natural compounds. Bacteria provide an extensive reservoir for the development of further anti-cancer therapeutics to meet the challenges posed by the diversity of these malignant diseases. While identifying cytotoxic compounds is often easy, achieving selective targeting of cancer cells is challenging. Here we describe a novel experimental approach (the Pioneer platform) for the identification and development of 'pioneering' bacterial variants that either show or are conduced to exhibit selective contact-independent anti-cancer cytotoxic activities. We engineered human cancer cells to secrete Colicin M that repress the growth of the bacterium Escherichia coli, while immortalised non-transformed cells were engineered to express Chloramphenicol Acetyltransferase capable of relieving the bacteriostatic effect of Chloramphenicol. Through co-culturing of E. coli with these two engineered human cell lines, we show bacterial outgrowth of DH5α E. coli is constrained by the combination of negative and positive selection pressures. This result supports the potential for this approach to screen or adaptively evolve 'pioneering' bacterial variants that can selectively eliminate the cancer cell population. Overall, the Pioneer platform demonstrates potential utility for drug discovery through multi-partner experimental evolution.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Escherichia coli/genetics , Antineoplastic Agents/pharmacology , Cell Line , Coculture Techniques
10.
Nat Commun ; 14(1): 3292, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369658

ABSTRACT

Age-associated B cells (ABC) accumulate with age and in individuals with different immunological disorders, including cancer patients treated with immune checkpoint blockade and those with inborn errors of immunity. Here, we investigate whether ABCs from different conditions are similar and how they impact the longitudinal level of the COVID-19 vaccine response. Single-cell RNA sequencing indicates that ABCs with distinct aetiologies have common transcriptional profiles and can be categorised according to their expression of immune genes, such as the autoimmune regulator (AIRE). Furthermore, higher baseline ABC frequency correlates with decreased levels of antigen-specific memory B cells and reduced neutralising capacity against SARS-CoV-2. ABCs express high levels of the inhibitory FcγRIIB receptor and are distinctive in their ability to bind immune complexes, which could contribute to diminish vaccine responses either directly, or indirectly via enhanced clearance of immune complexed-antigen. Expansion of ABCs may, therefore, serve as a biomarker identifying individuals at risk of suboptimal responses to vaccination.


Subject(s)
COVID-19 , Immunity, Humoral , Humans , Immune Checkpoint Inhibitors , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antigen-Antibody Complex , Antibodies, Viral
11.
Front Mol Biosci ; 10: 1128067, 2023.
Article in English | MEDLINE | ID: mdl-36845540

ABSTRACT

In vitro transcribed, modified messenger RNAs (IVTmRNAs) have been used to vaccinate billions of individuals against the SARS-CoV-2 virus, and are currently being developed for many additional therapeutic applications. IVTmRNAs must be translated into proteins with therapeutic activity by the same cellular machinery that also translates native endogenous transcripts. However, different genesis pathways and routes of entry into target cells as well as the presence of modified nucleotides mean that the way in which IVTmRNAs engage with the translational machinery, and the efficiency with which they are being translated, differs from native mRNAs. This review summarises our current knowledge of commonalities and differences in translation between IVTmRNAs and cellular mRNAs, which is key for the development of future design strategies that can generate IVTmRNAs with improved activity in therapeutic applications.

12.
Mol Cell ; 83(3): 320-323, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36736305

ABSTRACT

The Central Dogma has been a useful conceptualization of the transfer of genetic information, and our understanding of the detailed mechanisms involved in that transfer continues to evolve. Here, we speak to several scientists about their research, how it influences our understanding of information transfer, and questions for the future.

13.
J Cyst Fibros ; 22(3): 471-477, 2023 May.
Article in English | MEDLINE | ID: mdl-36710098

ABSTRACT

BACKGROUND: Advancements in the cystic fibrosis (CF) field have resulted in longer lifespans for individuals with CF. This has led to more responsibility for complex care regimens, frequent health care, and prescription medication utilization that are costly and may not be fully covered by health insurance. There are outstanding questions about unmet medical needs among the U.S. population with CF and how the financial burden of CF is associated with debt, housing instability, and food insecurity. METHODS: Researchers developed the CF Health Insurance Survey (CF HIS) to survey a convenience sample of people living with CF in the U.S. The sample was weighted to reflect the parameters of the 2019 Cystic Fibrosis Foundation Patient Registry Annual Data Report, and chi-square tests and multiple logistic regression models were conducted. RESULTS: A total of 1,856 CF patients in the U.S. were included in the study. Of these, 64% faced a financial burden: 55% of respondents faced debt issues, 26% housing issues, and 33% food insecurity issues. A third reported at least one unmet medical need: 24% faced unmet prescription needs, 12% delayed or shortened a hospitalization, and 10% delayed or skipped a care center visit as a result of the cost of care. CONCLUSIONS: People with CF in the U.S. experience high financial burden, which is associated with unmet medical needs. Income is the biggest risk factor for financial burden for people with CF, with people dually covered by Medicare and Medicaid particularly at risk.


Subject(s)
Cystic Fibrosis , Medicare , Humans , United States/epidemiology , Aged , Housing , Cystic Fibrosis/epidemiology , Cystic Fibrosis/therapy , Housing Instability , Health Services Accessibility , Health Services , Food Insecurity
14.
Biochem Soc Trans ; 50(6): 1885-1895, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36511302

ABSTRACT

Protein synthesis is dysregulated in the majority of cancers and this process therefore provides a good therapeutic target. Many novel anti-cancer agents are directed to target the initiation stage of translation, however, translation elongation also holds great potential as a therapeutic target. The elongation factor eIF5A that assists the formation of peptidyl bonds during the elongation process is of considerable interest in this regard. Overexpression of eIF5A has been linked with the development of a variety of cancers and inhibitors of the molecule have been proposed for anti-cancer clinical applications. eIF5A is the only protein in the cell that contains the post-translational modification hypusine. Hypusination is a two-step enzymatic process catalysed by the Deoxyhypusine Synthase (DHPS) and Deoxyhypusine Hydroxylase (DOHH). In addition, eIF5A can be acetylated by p300/CBP-associated factor (PCAF) which leads to translocation of the protein to the nucleus and its deactivation. In addition to the nucleus, eIF5A has been found in the mitochondria and the endoplasmic reticulum (ER) with eIF5A localisation related to function from regulation of mitochondrial activity and apoptosis to maintenance of ER integrity and control of the unfolded protein response (UPR). Given the pleiotropic functions of eIF5A and by extension the hypusination enzymes, this system is being considered as a target for a range of cancers including multiple myeloma, B-Cell lymphoma, and neuroblastoma. In this review, we explore the role of eIF5A and discuss the therapeutic strategies that are currently developing both in the pre- and the clinical stage.


Subject(s)
Neoplasms , Peptide Initiation Factors , Peptide Initiation Factors/genetics , Protein Biosynthesis , Protein Processing, Post-Translational , Apoptosis , Neoplasms/drug therapy
15.
Cell Metab ; 34(12): 2036-2046.e8, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36384144

ABSTRACT

Impairment of translation can lead to collisions of ribosomes, which constitute an activation platform for several ribosomal stress-surveillance pathways. Among these is the ribotoxic stress response (RSR), where ribosomal sensing by the MAP3K ZAKα leads to activation of p38 and JNK kinases. Despite these insights, the physiological ramifications of ribosomal impairment and downstream RSR signaling remain elusive. Here, we show that stalling of ribosomes is sufficient to activate ZAKα. In response to amino acid deprivation and full nutrient starvation, RSR impacts on the ensuing metabolic responses in cells, nematodes, and mice. The RSR-regulated responses in these model systems include regulation of AMPK and mTOR signaling, survival under starvation conditions, stress hormone production, and regulation of blood sugar control. In addition, ZAK-/- male mice present a lean phenotype. Our work highlights impaired ribosomes as metabolic signals and demonstrates a role for RSR signaling in metabolic regulation.


Subject(s)
MAP Kinase Kinase Kinases , Protein Biosynthesis , Ribosomes , Stress, Physiological , Animals , Male , Mice , MAP Kinase Kinase Kinases/metabolism
16.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36293328

ABSTRACT

Malignant mesothelioma is an aggressive tumour of the pleura (MPM) or peritoneum with a clinical presentation at an advanced stage of the disease. Current therapies only marginally improve survival and there is an urgent need to identify new treatments. Carcinoma-associated fibroblasts (CAFs) represent the main component of a vast stroma within MPM and play an important role in the tumour microenvironment. The influence of CAFs on cancer progression, aggressiveness and metastasis is well understood; however, the role of CAF-derived extracellular vesicles (CAF-EVs) in the promotion of tumour development and invasiveness is underexplored. We purified CAF-EVs from MPM-associated cells and healthy dermal human fibroblasts and examined their effect on cell proliferation and motility. The data show that exposure of healthy mesothelial cells to EVs derived from CAFs, but not from normal dermal human fibroblasts (NDHF) resulted in activating pro-oncogenic signalling pathways and increased proliferation and motility. Consistent with its role in suppressing Yes-Associated Protein (YAP) activation (which in MPM is a result of Hippo pathway inactivation), treatment with Simvastatin ameliorated the pro-oncogenic effects instigated by CAF-EVs by mechanisms involving both a reduction in EV number and changes in EV cargo. Collectively, these data determine the significance of CAF-derived EVs in mesothelioma development and progression and suggest new targets in cancer therapy.


Subject(s)
Cancer-Associated Fibroblasts , Extracellular Vesicles , Mesothelioma, Malignant , Mesothelioma , Humans , Cancer-Associated Fibroblasts/metabolism , YAP-Signaling Proteins , Cell Line, Tumor , Mesothelioma/pathology , Extracellular Vesicles/metabolism , Carcinogenesis/metabolism , Simvastatin , Tumor Microenvironment
17.
Nucleic Acids Res ; 50(19): e112, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35979952

ABSTRACT

The assessment of transcriptome-wide ribosome binding to mRNAs is useful for studying the dynamic regulation of protein synthesis. Two methods frequently applied in eukaryotic cells that operate at different levels of resolution are polysome profiling, which reveals the distribution of ribosome loads across the transcriptome, and ribosome footprinting (also termed ribosome profiling or Ribo-Seq), which when combined with appropriate data on mRNA expression can reveal ribosome densities on individual transcripts. In this study we develop methods for relating the information content of these two methods to one another, by reconstructing theoretical polysome profiles from ribosome footprinting data. Our results validate both approaches as experimental tools. Although we show that both methods can yield highly consistent data, some published ribosome footprinting datasets give rise to reconstructed polysome profiles with non-physiological features. We trace these aberrant features to inconsistencies in RNA and Ribo-Seq data when compared to datasets yielding physiological polysome profiles, thereby demonstrating that modelled polysomes are useful for assessing global dataset properties such as its quality in a simple, visual approach. Aside from using polysome profile reconstructions on published datasets, we propose that this also provides a useful tool for validating new ribosome footprinting datasets in early stages of analyses.


Subject(s)
Protein Biosynthesis , Ribosomes , Ribosomes/genetics , Ribosomes/metabolism , Polyribosomes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
19.
Biochem J ; 479(8): 901-920, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35380004

ABSTRACT

Diagnostic testing continues to be an integral component of the strategy to contain the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) global pandemic, the causative agent of Coronavirus Disease 2019 (COVID-19). The SARS-CoV-2 genome encodes the 3C-like protease (3CLpro) which is essential for coronavirus replication. This study adapts an in vitro colorimetric gold nanoparticle (AuNP) based protease assay to specifically detect the activity of SARS-CoV-2 3CLpro as a purified recombinant protein and as a cellular protein exogenously expressed in HEK293T human cells. We also demonstrate that the specific sensitivity of the assay for SARS-CoV-2 3CLpro can be improved by use of an optimised peptide substrate and through hybrid dimerisation with inactive 3CLpro mutant monomers. These findings highlight the potential for further development of the AuNP protease assay to detect SARS-CoV-2 3CLpro activity as a novel, accessible and cost-effective diagnostic test for SARS-CoV-2 infection at the point-of-care. Importantly, this versatile assay could also be easily adapted to detect specific protease activity associated with other viruses or diseases conditions.


Subject(s)
COVID-19 , Metal Nanoparticles , Antiviral Agents , COVID-19/diagnosis , Colorimetry , Coronavirus 3C Proteases , Gold , HEK293 Cells , Humans , Peptide Hydrolases , Protease Inhibitors , SARS-CoV-2
20.
Semin Cancer Biol ; 86(Pt 3): 151-165, 2022 11.
Article in English | MEDLINE | ID: mdl-35487398

ABSTRACT

In tumourigenesis, oncogenes or dysregulated tumour suppressor genes alter the canonical translation machinery leading to a reprogramming of the translatome that, in turn, promotes the translation of selected mRNAs encoding proteins involved in proliferation and metastasis. It is therefore unsurprising that abnormal expression levels and activities of eukaryotic initiation factors (eIFs), elongation factors (eEFs) or termination factors (eRFs) are associated with poor outcome for patients with a wide range of cancers. In this review we discuss how RNA binding proteins (RBPs) within the canonical translation factor machinery are dysregulated in cancers and how targeting such proteins is leading to new therapeutic avenues.


Subject(s)
Neoplasms , Protein Biosynthesis , Humans , Eukaryota/genetics , Eukaryota/metabolism , Carcinogenesis/genetics , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Neoplasms/genetics , Neoplasms/pathology , Cell Transformation, Neoplastic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...