Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Geophys Res Lett ; 48(6): e2020GL091342, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-34219836

ABSTRACT

Humboldt Gletscher is a 100-km wide, slow-moving glacier in north Greenland which holds a 19-cm global sea level equivalent. Humboldt has been the fourth largest contributor to sea level rise since 1972 but the cause of its mass loss has not been elucidated. Multi-beam echo sounding data collected in 2019 indicate a seabed 200 m deeper than previously known. Conductivity temperature depth data reveal the presence of warm water of Atlantic origin at 0°C at the glacier front and a warming of the ocean waters by 0.9 ± 0.1°C since 1962. Using an ocean model, we reconstruct grounded ice undercutting by the ocean, combine it with calculated retreat caused by ice thinning to floatation, and are able to fully explain the observed retreat. Two thirds of the retreat are caused by undercutting of grounded ice, which is a physical process not included in most ice sheet models.

2.
Sci Adv ; 7(1)2021 Jan.
Article in English | MEDLINE | ID: mdl-33523831

ABSTRACT

The retreat and acceleration of Greenland glaciers since the mid-1990s have been attributed to the enhanced intrusion of warm Atlantic Waters (AW) into fjords, but this assertion has not been quantitatively tested on a Greenland-wide basis or included in models. Here, we investigate how AW influenced retreat at 226 marine-terminating glaciers using ocean modeling, remote sensing, and in situ observations. We identify 74 glaciers in deep fjords with AW controlling 49% of the mass loss that retreated when warming increased undercutting by 48%. Conversely, 27 glaciers calving on shallow ridges and 24 in cold, shallow waters retreated little, contributing 15% of the loss, while 10 glaciers retreated substantially following the collapse of several ice shelves. The retreat mechanisms remain undiagnosed at 87 glaciers without ocean and bathymetry data, which controlled 19% of the loss. Ice sheet projections that exclude ocean-induced undercutting may underestimate mass loss by at least a factor of 2.

3.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33372140

ABSTRACT

Zachariae Isstrøm (ZI) and Nioghalvfjerdsfjorden (79N) are marine-terminating glaciers in northeast Greenland that hold an ice volume equivalent to a 1.1-m global sea level rise. ZI lost its floating ice shelf, sped up, retreated at 650 m/y, and experienced a 5-gigaton/y mass loss. Glacier 79N has been more stable despite its exposure to the same climate forcing. We analyze the impact of ocean thermal forcing on the glaciers. A three-dimensional inversion of airborne gravity data reveals an 800-m-deep, broad channel that allows subsurface, warm, Atlantic Intermediate Water (AIW) (+1.[Formula: see text]C) to reach the front of ZI via two sills at 350-m depth. Subsurface ocean temperature in that channel has warmed by 1.3[Formula: see text]C since 1979. Using an ocean model, we calculate a rate of ice removal at the grounding line by the ocean that increased from 108 m/y to 185 m/y in 1979-2019. Observed ice thinning caused a retreat of its flotation line to increase from 105 m/y to 217 m/y, for a combined grounding line retreat of 13 km in 41 y that matches independent observations within 14%. In contrast, the limited access of AIW to 79N via a narrower passage yields lower grounded ice removal (53 m/y to 99 m/y) and thinning-induced retreat (27 m/y to 50 m/y) for a combined retreat of 4.4 km, also within 12% of observations. Ocean-induced removal of ice at the grounding line, modulated by bathymetric barriers, is therefore a main driver of ice sheet retreat, but it is not incorporated in most ice sheet models.

4.
Science ; 349(6247): 532-5, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26160379

ABSTRACT

Recent modeling studies have proposed different scenarios to explain the slowdown in surface temperature warming in the most recent decade. Some of these studies seem to support the idea of internal variability and/or rearrangement of heat between the surface and the ocean interior. Others suggest that radiative forcing might also play a role. Our examination of observational data over the past two decades shows some significant differences when compared to model results from reanalyses and provides the most definitive explanation of how the heat was redistributed. We find that cooling in the top 100-meter layer of the Pacific Ocean was mainly compensated for by warming in the 100- to 300-meter layer of the Indian and Pacific Oceans in the past decade since 2003.

5.
Science ; 336(6081): 550-1, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22556241
6.
Proc Natl Acad Sci U S A ; 107(42): 17916-21, 2010 Oct 19.
Article in English | MEDLINE | ID: mdl-20921364

ABSTRACT

Freshwater discharge from the continents is a key component of Earth's water cycle that sustains human life and ecosystem health. Surprisingly, owing to a number of socioeconomic and political obstacles, a comprehensive global river discharge observing system does not yet exist. Here we use 13 years (1994-2006) of satellite precipitation, evaporation, and sea level data in an ocean mass balance to estimate freshwater discharge into the global ocean. Results indicate that global freshwater discharge averaged 36,055 km(3)/y for the study period while exhibiting significant interannual variability driven primarily by El Niño Southern Oscillation cycles. The method described here can ultimately be used to estimate long-term global discharge trends as the records of sea level rise and ocean temperature lengthen. For the relatively short 13-year period studied here, global discharge increased by 540 km(3)/y(2), which was largely attributed to an increase of global-ocean evaporation (768 km(3)/y(2)). Sustained growth of these flux rates into long-term trends would provide evidence for increasing intensity of the hydrologic cycle.

7.
Nature ; 465(7296): 334-7, 2010 May 20.
Article in English | MEDLINE | ID: mdl-20485432

ABSTRACT

A large ( approximately 10(23) J) multi-decadal globally averaged warming signal in the upper 300 m of the world's oceans was reported roughly a decade ago and is attributed to warming associated with anthropogenic greenhouse gases. The majority of the Earth's total energy uptake during recent decades has occurred in the upper ocean, but the underlying uncertainties in ocean warming are unclear, limiting our ability to assess closure of sea-level budgets, the global radiation imbalance and climate models. For example, several teams have recently produced different multi-year estimates of the annually averaged global integral of upper-ocean heat content anomalies (hereafter OHCA curves) or, equivalently, the thermosteric sea-level rise. Patterns of interannual variability, in particular, differ among methods. Here we examine several sources of uncertainty that contribute to differences among OHCA curves from 1993 to 2008, focusing on the difficulties of correcting biases in expendable bathythermograph (XBT) data. XBT data constitute the majority of the in situ measurements of upper-ocean heat content from 1967 to 2002, and we find that the uncertainty due to choice of XBT bias correction dominates among-method variability in OHCA curves during our 1993-2008 study period. Accounting for multiple sources of uncertainty, a composite of several OHCA curves using different XBT bias corrections still yields a statistically significant linear warming trend for 1993-2008 of 0.64 W m(-2) (calculated for the Earth's entire surface area), with a 90-per-cent confidence interval of 0.53-0.75 W m(-2).

8.
Science ; 308(5727): 1431-5, 2005 Jun 03.
Article in English | MEDLINE | ID: mdl-15860591

ABSTRACT

Our climate model, driven mainly by increasing human-made greenhouse gases and aerosols, among other forcings, calculates that Earth is now absorbing 0.85 +/- 0.15 watts per square meter more energy from the Sun than it is emitting to space. This imbalance is confirmed by precise measurements of increasing ocean heat content over the past 10 years. Implications include (i) the expectation of additional global warming of about 0.6 degrees C without further change of atmospheric composition; (ii) the confirmation of the climate system's lag in responding to forcings, implying the need for anticipatory actions to avoid any specified level of climate change; and (iii) the likelihood of acceleration of ice sheet disintegration and sea level rise.

SELECTION OF CITATIONS
SEARCH DETAIL
...