Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Heliyon ; 7(7): e07394, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34296001

ABSTRACT

In this study, experimental results of hydrogen producing process based on anaerobic photosynthesis using the purple non-sulfur bacterium Rhodobacter capsulatus are scrutinized. The bacterial culture was carried out in a photo-bioreactor operated in a quasi-continuous mode, using lactate as a carbon source. The method is based on the continuous stirred tank reactors (CSTR) technique to access kinetic parameters. The dynamic evolution of hydrogen production as a function of time was accurately simulated using Luedeking-Piret model and the growth of R. capsulatus was computed using Gompertz model. The combination of both models was successfully applied to determine the relevant parameters (λ, µmax, α and ß) for two R. capsulatus strains studied: the wild-type strain B10 and the H2 over-producing mutant IR3. The mathematical description indicates that the photofermentation is more promising than dark fermentation for the conversion of organic substrates into biogas.

2.
Biotechnol Bioeng ; 118(3): 1342-1354, 2021 03.
Article in English | MEDLINE | ID: mdl-33325030

ABSTRACT

Hydrogen production by Rhodobacter capsulatus is an anaerobic, photobiological process requiring specific mixing conditions. In this study, an innovative design of a photobioreactor is proposed. The design is based on a plate-type photobioreactor with an interconnected meandering channel to allow culture mixing and H2 degassing. The culture flow was characterized as a quasi-plug-flow with radial mixing caused by a turbulent-like regime achieved at a low Reynolds number. The dissipated volumetric power was decreased 10-fold while maintaining PBR performances (production and yields) when compared with a magnetically stirred tank reactor. To increase hydrogen production flow rate, several bacterial concentrations were tested by increasing the glutamate concentration using fed-batch cultures. The maximum hydrogen production flow rate (157.7 ± 9.3 ml H2 /L/h) achieved is one of the highest values so far reported for H2 production by R. capsulatus. These first results are encouraging for future scale-up of the plate-type reactor.


Subject(s)
Hydrogen/metabolism , Photobioreactors , Rhodobacter capsulatus/growth & development
3.
Cell Chem Biol ; 23(10): 1241-1250, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27693056

ABSTRACT

Coenzyme Q (Q) is a redox lipid that is central for the energetic metabolism of eukaryotes. The biosynthesis of Q from the aromatic precursor 4-hydroxybenzoic acid (4-HB) is understood fairly well. However, biosynthetic details of how 4-HB is produced from tyrosine remain elusive. Here, we provide key insights into this long-standing biosynthetic problem by uncovering molecular details of the first and last reactions of the pathway in the yeast Saccharomyces cerevisiae, namely the deamination of tyrosine to 4-hydroxyphenylpyruvate by Aro8 and Aro9, and the oxidation of 4-hydroxybenzaldehyde to 4-HB by Hfd1. Inactivation of the HFD1 gene in yeast resulted in Q deficiency, which was rescued by the human enzyme ALDH3A1. This suggests that a similar pathway operates in animals, including humans, and led us to propose that patients with genetically unassigned Q deficiency should be screened for mutations in aldehyde dehydrogenase genes, especially ALDH3A1.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Biosynthetic Pathways , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquinone/metabolism , Aldehyde Dehydrogenase/genetics , Benzaldehydes/metabolism , Gene Deletion , Gene Expression Regulation, Fungal , Humans , Oxidation-Reduction , Parabens/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Tyrosine/genetics , Tyrosine/metabolism , Ubiquinone/genetics
4.
BMC Evol Biol ; 16(1): 163, 2016 08 20.
Article in English | MEDLINE | ID: mdl-27544664

ABSTRACT

BACKGROUND: Predicting adaptive trajectories is a major goal of evolutionary biology and useful for practical applications. Systems biology has enabled the development of genome-scale metabolic models. However, analysing these models via flux balance analysis (FBA) cannot predict many evolutionary outcomes including adaptive diversification, whereby an ancestral lineage diverges to fill multiple niches. Here we combine in silico evolution with FBA and apply this modelling framework, evoFBA, to a long-term evolution experiment with Escherichia coli. RESULTS: Simulations predicted the adaptive diversification that occurred in one experimental population and generated hypotheses about the mechanisms that promoted coexistence of the diverged lineages. We experimentally tested and, on balance, verified these mechanisms, showing that diversification involved niche construction and character displacement through differential nutrient uptake and altered metabolic regulation. CONCLUSION: The evoFBA framework represents a promising new way to model biochemical evolution, one that can generate testable predictions about evolutionary and ecosystem-level outcomes.


Subject(s)
Biological Evolution , Escherichia coli/genetics , Escherichia coli/metabolism , Computer Simulation , Ecosystem , Escherichia coli/growth & development , Models, Biological
5.
Can J Microbiol ; 60(12): 829-37, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25403904

ABSTRACT

This paper presents the first report providing information on the zinc (Zn) biosorption potentialities of the purple non-sulfur bacterium Rhodobacter capsulatus. The effects of various biological, physical, and chemical parameters on Zn biosorption were studied in both the wild-type strain B10 and a strain, RC220, lacking the endogenous plasmid. At an initial Zn concentration of 10 mg·L(-1), the Zn biosorption capacity at pH 7 for bacterial biomass grown in synthetic medium containing lactate as carbon source was 17 and 16 mg Zn·(g dry mass)(-1) for strains B10 and RC220, respectively. Equilibrium was achieved in a contact time of 30-120 min, depending on the initial Zn concentration. Zn sorption by live biomass was modelled, at equilibrium, according to the Redlich-Peterson and Langmuir isotherms, in the range of 1-600 mg Zn·L(-1). The wild-type strain showed a maximal Zn uptake capacity (Qm) of 164 ± 8 mg·(g dry mass)(-1) and an equilibrium constant (Kads) of 0.017 ± 0.00085 L·(mg Zn)(-1), compared with values of 73.9 mg·(g dry mass)(-1) and 0.361 L·mg(-1) for the strain lacking the endogenous plasmid. The Qm value observed for R. capsulatus B10 is one of the highest reported in the literature, suggesting that this strain may be useful for Zn bioremediation. The lower Qm value and higher equilibrium constant observed for strain RC220 suggest that the endogenous plasmid confers an enhanced biosorption capacity in this bacterium, although no genetic determinants for Zn resistance appear to be located on the plasmid, and possible explanations for this are discussed.


Subject(s)
Rhodobacter capsulatus/metabolism , Zinc/metabolism , Adsorption , Biodegradation, Environmental , Biomass , Drug Resistance, Bacterial , Hydrogen-Ion Concentration , Kinetics , Rhodobacter capsulatus/drug effects , Rhodobacter capsulatus/genetics , Rhodobacter capsulatus/growth & development , Zinc Sulfate/pharmacology
6.
Environ Sci Technol ; 40(13): 4151-7, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16856730

ABSTRACT

Fipronil is a recently discovered insecticide of the phenylpyrazole series. It has a highly selective biochemical mode of action, which has led to its use in a large number of important agronomical, household, and veterinary applications. Previous studies have shown that, during exposure to light, fipronil is converted into a desulfurated derivative (desulfinyl-fipronil), which has slightly reduced insecticidal activity. In this study, the photodegradation of fipronil was studied in solution at low light intensities (sunlight or UV lamp). In addition to desulfinyl-fipronil, a large number of minor photoproducts were observed, including diversely substituted phenylpyrazole derivatives and aniline derivatives that had lost the pyrazole ring. Desulfinylfipronil itself was shown to be relatively stable under both UV light and sunlight, with only limited changes occurring in the substitution of the aromatic ring. Since this compound accumulated to levels corresponding to only 30-55% of the amount of fipronil degraded, it was concluded that one or more alternative pathways of photodegradation must be operating. On the basis of the structurally identified photoproducts, it is proposed that fipronil photodegradation occurs via at least two distinct pathways, one of which involves desulfuration at the 4-position of the pyrazole ring giving the desulfinyl derivative and the other of which involves a different modification of the 4-substituent, leading to cleavage of the pyrazole ring and the formation of aniline derivatives. The latter compounds do not accumulate to high levels and may, therefore, be degraded further. The ecological significance of these results is discussed, particularly with regard to the insecticidal activity of the photoproducts.


Subject(s)
Insecticides/chemistry , Insecticides/radiation effects , Light , Pyrazoles/chemistry , Pyrazoles/radiation effects , Ultraviolet Rays , Aedes , Aniline Compounds/chemistry , Animals , Gas Chromatography-Mass Spectrometry , Kinetics , Pyrazoles/toxicity , Sulfides/chemistry , Toxicity Tests
7.
Environ Sci Technol ; 39(15): 5729-35, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-16124309

ABSTRACT

As a means to study the fate of polycyclic aromatic hydrocarbons (PAHs) in freshwater sediments, pyrene mineralization was examined in microcosms spiked with [14C]pyrene. Some microcosms were planted with reeds (Phragmites australis) and/or inoculated with a pyrene-degrading strain, Mycobacterium sp. 6PY1. Mineralization rates recorded over a 61 d period showed that reeds promoted a significant enhancement of pyrene degradation, which possibly resulted from a root-mediated increase of oxygen diffusion into the sediment layer, as indicated by in situ redox measurements. In inoculated microcosms, mineralization reached a higher level in the absence (8.8%) than in the presence of plants (4.4%). Mineralization activity was accompanied by the release of water-soluble pyrene oxidation products, the most abundant of which was identified as 4,5-diphenanthroic acid. Pyrene was recovered from plant tissues, including stems and leaves, at concentrations ranging between 40 and 240 microg/g of dry mass. Plants also accumulated labeled oxidation products likely derived from microbial degradation. Pyrene-degrading strains were 35-70-fold more abundant in inoculated than in noninoculated microcosms. Most of the pyrene-degrading isolates selected from the indigenous microflora were identified as Mycobacterium austroafricanum strains. Taken together, the results of this study show that plants or PAH-degrading bacteria enhance pollutant removal, but their effects are not necessarily cumulative.


Subject(s)
Fresh Water/chemistry , Geologic Sediments/chemistry , Mycobacterium/growth & development , Poaceae/growth & development , Pyrenes/analysis , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Minerals/chemistry
8.
FEMS Microbiol Lett ; 241(2): 143-50, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15598525

ABSTRACT

A bacterial strain able to grow in pure culture with chrysene as sole added carbon and energy source was isolated from PAH-contaminated soil after successive enrichment cultures in a biphasic growth medium. Initially, growth occurred in the form of a biofilm at the interface between the aqueous and non-aqueous liquid phases. However, after a certain time, a transition occurred in the enrichment cultures, with growth occurring in suspension and a concomitant increase in the rate of chrysene degradation. The strain responsible for chrysene degradation in these cultures, named Sphingomonas sp. CHY-1, was identified by 16S rDNA sequencing as a novel sphingomonad, the closest relative in the databases being Sphingomonas xenophaga BN6T (96% sequence identity). Both these strains clustered with members of the genera Sphingobium and Rhizomonas, but could not be categorically assigned to either genus. Sphingomonas sp. CHY-1 was characterized in terms of its growth on chrysene and other PAH, and the kinetics of chrysene degradation and 14C-chrysene mineralization were measured. At an initial chrysene concentration of 0.5 g l(-1) silicone oil, and an organic/aqueous phase ratio of 1:4, chrysene was 50% degraded after 5 days incubation and 97.5% degraded after 35 days. The protein content of cultures reached a maximum value of 11.5 microg ml(-1) aqueous phase, corresponding to 92 mg g(-1) chrysene. 14C-labelled chrysene was 50% mineralized after 6-8 weeks incubation, 10.7% of the radioactivity was incorporated into cell biomass and 8.4% was found in the aqueous culture supernatant. Sphingomonas sp. CHY-1 also grew on naphthalene, phenanthrene and anthracene, and naphthalene was the preferred substrate, with a doubling time of 6.9 h.


Subject(s)
Chrysenes/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Sphingomonas/classification , Sphingomonas/isolation & purification , Biodegradation, Environmental , Biofilms/growth & development , Culture Media , DNA, Ribosomal/analysis , Molecular Sequence Data , Polycyclic Aromatic Hydrocarbons/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sphingomonas/growth & development , Sphingomonas/metabolism
9.
Appl Environ Microbiol ; 70(11): 6714-25, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15528538

ABSTRACT

In this study, the enzymes involved in polycyclic aromatic hydrocarbon (PAH) degradation in the chrysene-degrading organism Sphingomonas sp. strain CHY-1 were investigated. [14C]chrysene mineralization experiments showed that PAH-grown bacteria produced high levels of chrysene-catabolic activity. One PAH-induced protein displayed similarity with a ring-hydroxylating dioxygenase beta subunit, and a second PAH-induced protein displayed similarity with an extradiol dioxygenase. The genes encoding these proteins were cloned, and sequence analysis revealed two distinct loci containing clustered catabolic genes with strong similarities to corresponding genes found in Novosphingobium aromaticivorans F199. In the first locus, two genes potentially encoding a terminal dioxygenase component, designated PhnI, were followed by a gene coding for an aryl alcohol dehydrogenase (phnB). The second locus contained five genes encoding an extradiol dioxygenase (phnC), a ferredoxin (phnA3), another oxygenase component (PhnII), and an isomerase (phnD). PhnI was found to be capable of converting several PAHs, including chrysene, to the corresponding dihydrodiols. The activity of PhnI was greatly enhanced upon coexpression of genes encoding a ferredoxin (phnA3) and a reductase (phnA4). Disruption of the phnA1a gene encoding the PhnI alpha subunit resulted in a mutant strain that had lost the ability to grow on PAHs. The recombinant PhnII enzyme overproduced in Escherichia coli functioned as a salicylate 1-hydroxylase. PhnII also used methylsalicylates and anthranilate as substrates. Our results indicated that a single enzyme (PhnI) was responsible for the initial attack of a range of PAHs, including chrysene, in strain CHY-1. Furthermore, the conversion of salicylate to catechol was catalyzed by a three-component oxygenase unrelated to known salicylate hydroxylases.


Subject(s)
Dioxygenases , Polycyclic Aromatic Hydrocarbons/metabolism , Sphingomonas/enzymology , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Chrysenes/metabolism , Dioxygenases/chemistry , Dioxygenases/genetics , Dioxygenases/metabolism , Molecular Sequence Data , Mutation , Sequence Analysis, DNA , Sphingomonas/genetics , Sphingomonas/growth & development
10.
J Bacteriol ; 185(13): 3828-41, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12813077

ABSTRACT

In this study, the enzymes involved in polycyclic aromatic hydrocarbon (PAH) degradation were investigated in the pyrene-degrading Mycobacterium sp. strain 6PY1. [(14)C]pyrene mineralization experiments showed that bacteria grown with either pyrene or phenanthrene produced high levels of pyrene-catabolic activity but that acetate-grown cells had no activity. As a means of identifying specific catabolic enzymes, protein extracts from bacteria grown on pyrene or on other carbon sources were analyzed by two-dimensional gel electrophoresis. Pyrene-induced proteins were tentatively identified by peptide sequence analysis. Half of them resembled enzymes known to be involved in phenanthrene degradation, with closest similarity to the corresponding enzymes from Nocardioides sp. strain KP7. The genes encoding the terminal components of two distinct ring-hydroxylating dioxygenases were cloned. Sequence analysis revealed that the two enzymes, designated Pdo1 and Pdo2, belong to a subfamily of dioxygenases found exclusively in gram-positive bacteria. When overproduced in Escherichia coli, Pdo1 and Pdo2 showed distinctive selectivities towards PAH substrates, with the former enzyme catalyzing the dihydroxylation of both pyrene and phenanthrene and the latter preferentially oxidizing phenanthrene. The catalytic activity of the Pdo2 enzyme was dramatically enhanced when electron carrier proteins of the phenanthrene dioxygenase from strain KP7 were coexpressed in recombinant cells. The Pdo2 enzyme was purified as a brown protein consisting of two types of subunits with M(r)s of about 52,000 and 20,000. Immunoblot analysis of cell extracts from strain 6PY1 revealed that Pdo1 was present in cells grown on benzoate, phenanthrene, or pyrene and absent in acetate-grown cells. In contrast, Pdo2 could be detected only in PAH-grown cells. These results indicated that the two enzymes were differentially regulated depending on the carbon source used for growth.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Mycobacterium/enzymology , Oxygenases/metabolism , Pyrenes/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cloning, Molecular , Electrophoresis, Gel, Two-Dimensional , Molecular Sequence Data , Mycobacterium/genetics , Mycobacterium/growth & development , Oxygenases/chemistry , Oxygenases/genetics , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Sequence Analysis, DNA
11.
Int J Syst Evol Microbiol ; 53(Pt 1): 153-163, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12656167

ABSTRACT

Microbial mats developing in the hypersaline lagoons of a commercial saltern in the Salin-de-Giraud (Rhône delta) were found to contain a red layer fully dominated by spirilloid phototrophic purple bacteria underlying a cyanobacterial layer. From this layer four strains of spirilloid purple bacteria were isolated, all of which were extremely halophilic. All strains were isolated by using the same medium under halophilic photolithoheterotrophic conditions. One of them, strain SG 3105 was a purple non-sulfur bacterial strain closely related to Rhodovibrio sodomensis with a 16S rDNA sequence similarity of 98.8%. The three other isolated strains, SG 3301T, SG 3302 and SG 3304, were purple sulfur bacteria and were found to be very similar. The cells were motile by a polar tuft of flagella. Photosynthetic intracytoplasmic membranes of the lamellar stack type contained BChl a and spirilloxanthin as the major carotenoid. Phototrophic growth with sulfide as electron donor was poor; globules of elemental sulfur were present outside the cells. In the presence of sulfide and CO2 good growth occurred with organic substrates. Optimum growth occurred in the presence of 9-12% (w/v) NaCl at neutral pH (optimal pH 6.8-7) and at 30-35 degrees C. The DNA base composition of strains SG 3301T and SG 3304 were 74.5 and 74.1 mol% G + C, respectively. According to the 16S rDNA sequences, strains SG 3301T and SG 3304 belonged to the genus Halorhodospira, but they were sufficiently separated morphologically, physiologically and genetically from other recognized Halorhodospira species to be described as a new species of the genus. They are, therefore, described as Halorhodospira neutriphila sp. nov. with strain SG 3301T as the type strain (=DSM 15116T).


Subject(s)
Gammaproteobacteria/classification , Gammaproteobacteria/isolation & purification , Base Composition , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Ecosystem , Gammaproteobacteria/genetics , Gammaproteobacteria/metabolism , Hydrogen-Ion Concentration , Light , Mediterranean Region , Microscopy, Electron , Molecular Sequence Data , Phylogeny , Pigments, Biological/analysis , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sodium Chloride/isolation & purification , Sulfur/metabolism
12.
FEMS Microbiol Ecol ; 44(1): 117-30, 2003 May 01.
Article in English | MEDLINE | ID: mdl-19719657

ABSTRACT

Abstract Small-subunit (16S) ribosomal DNA clone libraries were constructed using DNA isolated from the anoxic sediments underlying the cyanobacterial mats from two sampling stations of different salinity (Station A, 150-200 per thousand salinity; Station B, 250-320 per thousand salinity) located in the Mediterranean salterns of Salin-de-Giraud (France). Previous studies have shown that the mats at these two sites differ greatly in physicochemical and microbial composition. Sequence analysis of the clone libraries indicated that prokaryotic diversity was high in the sediments from both stations, in both the Bacteria and Archaea domains. Clones related to the alpha- and delta-Proteobacteria (phylum Proteobacteria), the strictly anaerobic fermentative bacteria (phylum Firmicutes), and the Cytophaga-Flavobacterium-Bacteroides (CFB) group (phylum Bacteroidetes) were found in the libraries from both sediments and accounted for the majority of Bacteria domain clones. The results indicated that the populations of delta-Proteobacteria (principally sulfate-reducing bacteria) were significantly different in the two sediments. In addition, several clones from Station A were related either to the gamma-Proteobacteria (phylum Proteobacteria) or to the Spirochaeta, whereas the library from Station B contained several clones related to the uncultured, deep-branching 'KTK group' of Bacteria. Among the Archaea domain clones, all from Station B and the majority from Station A were related to the order Halobacteriales (phylum Euryarchaeota, class Halobacteria). In addition, 12% of the Archaea domain clones from Station A were related to the Methanococci group (phylum Euryarchaeota, class Methanobacteria) and 32% to the phylum Crenarchaeota. This study represents the first molecular analysis of the diversity of halophilic prokaryotes present in these sediments and the results are discussed in the light of our current knowledge of the microbial ecology of these hypersaline ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...