Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Exp Clin Endocrinol Diabetes ; 130(1): 43-48, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32911559

ABSTRACT

Prevalence of both type 1 and type 2 diabetes mellitus is growing worldwide and one major cause for morbidity and mortality. However, not every patient develops diabetes-related complications, but causes for the individual susceptibility are still not fully understood. As a platform to address this, we initiated the TUDID (TUebingen DIabetes Database) study, a prospective, monocentric, observational study that includes adults with diabetes mellitus who are treated in the inpatient clinic of a University Hospital in southern Germany. Besides a thorough clinical examination and extensive laboratory tests (with integrated biobanking), major study focuses are the kidneys, the eyes, the vasculature as well as cognition and mood where standardized investigations for early stages for diabetes complications are performed. Analyses of the data generated by this precise characterization of diabetes-related complications will contribute to our understanding of the development and course of such complications, and thus facilitate the implementation of tailored treatment options that can reduce the risk and severity of diabetes-related complications.


Subject(s)
Databases, Factual , Diabetes Complications/diagnosis , Adult , Germany , Humans , Prospective Studies , Research Design
2.
Metabolism ; 119: 154776, 2021 06.
Article in English | MEDLINE | ID: mdl-33862045

ABSTRACT

AIMS/HYPOTHESIS: Besides insulin resistance, type 2 diabetes associates with decreased hepatic insulin clearance (HIC). We now tested for causal relationship of HIC to liver fat accumulation or features of the metabolic syndrome. METHODS: HIC was derived from oral glucose tolerance tests with the "Oral C-peptide and Insulin Minimal Models" (n = 3311). Liver fat was quantified by magnetic resonance spectroscopy (n = 1211). Mendelian Randomization was performed using established single nucleotide polymorphisms (SNPs; 115 for liver fat, 155 alanine-aminotransferase, 37 insulin sensitivity, 37 insulin secretion, 72 fasting insulin, 5285 BMI, 163 visceral fat, 270 waist circumference, 442 triglycerides, 620 HDL-Cholesterol, 193 C-reactive protein, 53 lipodystrophy-like phenotypes). RESULTS: HIC associated inversely with liver fat (p < 0.003) and insulin sensitivity (p < 0.0001). Both liver fat and HIC were independently associated with insulin sensitivity (p < 0.0001). Neither liver fat nor alanine-aminotransferase were causally linked to HIC, as indicated by Mendelian Randomization (Nliver fat = 1054, NHIC = 2254; Nalanineaminotranferase = 1985, NHIC = 2251). BMI-related SNPs were causally associated with HIC (NBMI = 2772, NHIC = 2259, p < 0.001) but not waist circumference-SNPs (NSNPs-waist circumference = 2751, NHIC = 2280). Genetically determined insulin sensitivity was not causally related to HIC (Ninsulin sensitivity = 2752, NHIC = 2286). C-reactive protein and HDL were causally associated with HIC, with higher C-reactive protein and lower HDL leading to higher HIC (NC-reactive protein = 2660, NHIC = 2240; NHDL = 2694, NHIC = 2275). CONCLUSIONS: This Mendelian Randomization analysis does not support a causal link between hepatic steatosis and HIC. Other components of the metabolic syndrome seem to compensate peripheral hyperinsulinemia by increasing hepatic insulin extraction.


Subject(s)
Insulin/metabolism , Liver/metabolism , Mendelian Randomization Analysis , Adult , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Fatty Liver/epidemiology , Fatty Liver/genetics , Fatty Liver/metabolism , Female , Genetic Association Studies/statistics & numerical data , Germany/epidemiology , Glucose Intolerance/complications , Glucose Intolerance/epidemiology , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Glucose Tolerance Test , Humans , Hyperinsulinism/epidemiology , Hyperinsulinism/genetics , Hyperinsulinism/metabolism , Insulin Resistance/genetics , Insulin Secretion/genetics , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Polymorphism, Single Nucleotide , Retrospective Studies
3.
Article in English | MEDLINE | ID: mdl-33203727

ABSTRACT

INTRODUCTION: Epidemiological studies indicate an association between type 2 diabetes and cognitive dysfunction that appear to start already in the prediabetic state. Although cross-sectional studies have linked insulin resistance to impaired cognition, the potential predictive value of insulin resistance has not yet been sufficiently studied longitudinally without confounding by overt diabetes (and its pharmacological treatment). RESEARCH DESIGN AND METHODS: We investigated longitudinal data from participants of the 'Tübinger Evaluation of Risk Factors for Early Detection of Neurodegeneration' Study. Subjects underwent a neurocognitive assessment battery (CERAD Plus battery; Consortium to Establish a Registry for Alzheimer's Disease) at baseline and followed every 2 years (median follow-up 4.0 Q1-3: 2.2-4.3 years). Subjects within a pre-diabetic glycated hemoglobin range of 5.6%-6.5% underwent 5-point 75 g oral glucose tolerance tests (OGTTs) with assessment of insulin sensitivity and insulin secretion (n=175). Subjects with newly diagnosed diabetes mellitus or with major depressivity (Beck Depression Inventory >20) were excluded (n=15). Data were analyzed by mixed models using sex, age and glycemic trait as fixed effects. Subject and time since first measurement were used as random effects. RESULTS: Insulin sensitivity was positively associated with the CERAD sum score (higher is better) in a time-dependent manner (p=0.0057). This result is mainly driven by a steeper decrease in the memory domain associated with lower insulin sensitivity (p=0.029). The interaction between age and insulin sensitivity was independent of glycemia (p=0.02). There was also no association between insulin secretion and cognition. CONCLUSIONS: Insulin resistance rather than sole elevation of blood glucose predicts cognitive decline, specifically in the memory domain, in persons with prediabetes. Treatments of diabetes that improve insulin sensitivity might therefore have the potential to postpone or even prevent cognitive decline in patients with diabetes.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Insulin Resistance , Prediabetic State , Cognitive Dysfunction/diagnosis , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Humans , Prediabetic State/complications , Prediabetic State/diagnosis
4.
Neuroendocrinology ; 110(11-12): 929-937, 2020.
Article in English | MEDLINE | ID: mdl-31689708

ABSTRACT

BACKGROUND: Animal studies and initial correlative data in humans indicate that insulin action in the brain may affect pancreatic insulin secretion. An important brain region for this process is the hypothalamus, an area that can develop insulin resistance. METHODS: Fifteen young, healthy men (27 ± 3 years) with a wide BMI spectrum (20-30 kg/m2) underwent 2 hyperglycemic clamps (target blood glucose: 10 mmol/L). In this double-blind study, subjects received 160 U of insulin or placebo as a nasal spray on 2 days in randomized order. On another day, insulin sensitivity of the hypothalamus was determined by functional magnetic resonance imaging. RESULTS: Glucose levels were comparable on both study days. In the whole group, C-peptide levels were not significantly different between conditions. Though, there was a significant interaction between insulin sensitivity of the hypothalamus × nasal spray × time on C-peptide levels (p = 10-6). The group was therefore divided according to median hypothalamic insulin sensitivity. C-peptide concentrations were higher after intranasal insulin compared to placebo spray in the group with a strong hypothalamic insulin response (p < 0.0001, ß = 6.00 ± 1.24) and lower in the brain insulin-resistant group (p = 0.005, ß = -2.68 ± 0.95). Neither somatostatin nor glucagon kinetics was altered by the nasal spray. CONCLUSIONS: In participants with high hypothalamic insulin sensitivity, insulin action in the brain enhanced second-phase insulin secretion from pancreatic beta cells. This reaction could, for example, contribute to late postprandial glucose regulation by suppressing hepatic glucose production by portal venous insulin.


Subject(s)
Hypothalamus/drug effects , Hypothalamus/metabolism , Insulin Resistance , Insulin Secretion/drug effects , Insulin/pharmacology , Administration, Intranasal , Adult , Body Mass Index , Double-Blind Method , Humans , Insulin/administration & dosage , Magnetic Resonance Imaging , Male , Young Adult
5.
Article in English | MEDLINE | ID: mdl-30930846

ABSTRACT

Background: Testosterone levels are differentially linked with diabetes risk in men and women: lower testosterone levels in men and higher testosterone levels in women are associated with type 2 diabetes, though, the mechanisms are not fully clear. We addressed sex-specific links between testosterone and major pathogenetic mechanisms of diabetes. Methods: We analyzed data of 623 subjects (202 male, 345 female without, and 76 female with oral contraceptive therapy [OCT]) for whom insulin sensitivity and insulin secretion were assessed by oral glucose tolerance test. Body fat percentage was assessed by bioelectrical impedance. Testosterone was measured by enzyme-linked immunoassay; free testosterone and Framingham risk score were calculated. Results: There were significant interactions between testosterone and sex for all tested metabolic traits. Increasing testosterone was associated with less body fat, elevated insulin sensitivity, and reduced glycemia, independent of adiposity in men. In women without OCT, testosterone correlated with more body fat, insulin resistance, and higher glucose concentrations. Testosterone was not associated with insulin secretion in either sex, but with lower Framingham risk score in men and higher Framingham risk score in women. Conclusions: Similar to diabetes risk, insulin resistance has different association directions with testosterone levels in males and females. Insulin resistance could therefore constitute the best biological candidate linking testosterone levels and diabetes prevalence. The question of antiandrogen therapy being able to improve metabolism, glucose tolerance and cardiovascular risk in women was not clarified in our study but should be reviewed with higher numbers in a carefully matched study to reduce the influence of confounding variables.

6.
Sci Rep ; 9(1): 1303, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718741

ABSTRACT

Niacin inhibits fatty acid flux from adipose tissue to liver, reduces hepatic triglyceride synthesis and increases hepatic lipid oxidation. Thus, niacin may have a role in the regulation of liver fat content in humans. We tested if dietary intake of niacin predicts change of liver fat content during a lifestyle intervention. To this end, we estimated the composition of diet from diaries of 202 healthy subjects at risk of type 2 diabetes undergoing lifestyle intervention comprising physical activity and diet counselling. Total-, subcutaneous- and visceral adipose tissue mass were measured by magnetic resonance (MR) tomography and liver fat content by 1H-MR spectroscopy at baseline and after 9 months of follow-up. Among fat compartments, liver fat content showed the largest decrease (-32%, p < 0.0001). High baseline niacin intake predicted a larger decrease of liver fat (p = 0.004). Subjects in the highest quartile of niacin intake at baseline also had the largest decrease of liver fat (1st:-10%; 2nd:-27%; 3rd:-35%; 4th:-37%). Among 58 subjects with nonalcoholic fatty liver disease (NAFLD) at baseline, NAFLD resolved in 23 subjects during the lifestyle intervention. For one standard deviation increase in niacin intake, the odds ratio for resolution of NAFLD was 1.77 (95% CI, 1.00-3.43). High dietary niacin intake may have a favorable effect on the reduction of liver fat during lifestyle intervention.


Subject(s)
Adipose Tissue/metabolism , Dietary Supplements , Eating , Life Style , Liver/metabolism , Liver/pathology , Niacin , Adiposity , Adult , Biomarkers , Female , Humans , Lipid Metabolism , Lipogenesis , Male , Middle Aged , Niacin/metabolism
7.
Am J Clin Nutr ; 109(2): 288-296, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30721948

ABSTRACT

Background: Epidemiological studies suggest that an increased red meat intake is associated with a higher risk of type 2 diabetes, whereas an increased fiber intake is associated with a lower risk. Objectives: We conducted an intervention study to investigate the effects of these nutritional factors on glucose and lipid metabolism, body-fat distribution, and liver fat content in subjects at increased risk of type 2 diabetes. Methods: This prospective, randomized, and controlled dietary intervention study was performed over 6 mo. All groups decreased their daily caloric intake by 400 kcal. The "control" group (N = 40) only had this requirement. The "no red meat" group (N = 48) in addition aimed to avoid the intake of red meat, and the "fiber" group (N = 44) increased intake of fibers to 40 g/d. Anthropometric parameters and frequently sampled oral glucose tolerance tests were performed before and after intervention. Body-fat mass and distribution, liver fat, and liver iron content were assessed by MRI and single voxel proton magnetic resonance spectroscopy. Results: Participants in all groups lost weight (mean 3.3 ± 0.5 kg, P < 0.0001). Glucose tolerance and insulin sensitivity improved (P < 0.001), and body and visceral fat mass decreased in all groups (P < 0.001). These changes did not differ between groups. Liver fat content decreased significantly (P < 0.001) with no differences between the groups. The decrease in liver fat correlated with the decrease in ferritin during intervention (r2 = 0.08, P = 0.0021). This association was confirmed in an independent lifestyle intervention study (Tuebingen Lifestyle Intervention Program, N = 229, P = 0.0084). Conclusions: Our data indicate that caloric restriction leads to a marked improvement in glucose metabolism and body-fat composition, including liver-fat content. The marked reduction in liver fat might be mediated via changes in ferritin levels. In the context of caloric restriction, there seems to be no additional beneficial impact of reduced red meat intake and increased fiber intake on the improvement in cardiometabolic risk parameters. This trial was registered at clinicaltrials.gov as NCT03231839.


Subject(s)
Adipose Tissue/metabolism , Blood Glucose/metabolism , Caloric Restriction , Dietary Fiber/pharmacology , Energy Intake , Liver/metabolism , Red Meat , Adult , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/prevention & control , Diet , Dietary Fiber/administration & dosage , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/prevention & control , Feeding Behavior , Female , Ferritins/metabolism , Glucose Tolerance Test , Humans , Insulin Resistance , Intra-Abdominal Fat/metabolism , Iron/metabolism , Life Style , Male , Middle Aged , Prospective Studies , Red Meat/adverse effects , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL
...