Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theriogenology ; 42(5): 831-40, 1994 Oct.
Article in English | MEDLINE | ID: mdl-16727588

ABSTRACT

Precise data on fertility results following peri- and postovulatory insemination in spontaneously ovulating gilts is lacking. Using transcutaneous sonography every 4 h during estrus as a tool for diagnosis of ovulation, the effects of different time intervals of insemination relative to ovulation were investigated with liquid semen (Experiment 1, n=76 gilts) and frozen semen (Experiment 2, n=80 gilts). In Experiment 3 (n=24 gilts) the number of Day-28 embryos related to the various intervals between insemination and ovulation was determined after the use of liquid semen. Using liquid semen the fertilization rates based on Day-2 to Day-5 embryos and the number of accessory spermatozoa decreased significantly in gilts inseminated with 2 x 10(9) spermatozoa per dosage in intervals of more than 12 h before or more than 4 h after ovulation. In the time interval 4 to 0 h before ovulation, comparable fertilization rates were obtained using frozen semen (88.1%) and liquid semen (92.5%). Fertilization rates and numbers of accessory spermatozoa decreased significantly when gilts were inseminated with frozen semen more than 4 h before or 0 to 4 h after the detection of ovulation. The percentage of Day-28 embryos was significantly higher following preovulatory insemination compared to inseminations 0 to 4 h and 4 to 8 h after ovulation. It is concluded that the optimal time of insemination using liquid semen is 12 to 0 h before ovulation, and 4 to 0 h before ovulation using frozen semen. The results stress the importance of further research on sperm transport and ovulation stimulating mechanisms, as well as studies on the time of ovulation relative to estrus-weaning intervals and estrus duration.

2.
Theriogenology ; 41(7): 1367-77, 1994.
Article in English | MEDLINE | ID: mdl-16727491

ABSTRACT

In pigs, high variation is seen in the duration of estrus and in the time of ovulation. This is one of a wide range of factors not related to semen quality, which possibly influences the results of field insemination trials. Experiment 1 (n=81 gilts) was performed to determine the influence of the time of ovulation on the fertilizing capacity of liquid boar semen stored up to 118 h. The objective of Experiment 2 (n=102 gilts) was to study the fertilizing potential of semen stored up to 120 h in 2 different extenders, Androhep and Beltsville Thawing Solution (BTS), by means of postovulatory AI. Inseminations were performed 0 to 4 h after ovulation in order to standardize the trial conditions. Fertilization rates based on Day-2 to Day-4 embryos, and the number of accessory spermatozoa per zona pellucida did not differ between semen stored for 0 to 48 and 48 to 87 h in gilts ovulating within 12 after insemination (Experiment 1). Gilts with an interval of 12 to 24 h between AI and ovulation had lower fertility results using semen stored for more than 48 h. A further decrease was observed when semen storage exceeded 87 h in those gilts ovulating later than 24 h after insemination. The time of ovulation has to be considered as being a major factor of variation in the fertility results of AI trials. In Experiment 2, fertilization rates and numbers of accessory spermatozoa decreased between semen stored for 0 to 24 and 24 to 48 h in BTS, and between semen stored for 0 to 24 and 48 to 72 h in Androhep. Significant differences in fertility between diluents were seen only when using semen stored for more than 96 h, with semen extended with Androhep giving the higher results. The results indicate that the decrease in fertilizing capacity due to in vitro aging of spermatozoa cannot be prevented even during the first days of storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...