Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Curr Biol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39032492

ABSTRACT

A major challenge in neuroscience is to understand how neural representations of sensory information are transformed by the network of ascending and descending connections in each sensory system. By recording from neurons at several levels of the auditory pathway, we show that much of the nonlinear encoding of complex sounds in auditory cortex can be explained by transformations in the midbrain and thalamus. Modeling cortical neurons in terms of their inputs across these subcortical populations enables their responses to be predicted with unprecedented accuracy. By contrast, subcortical responses cannot be predicted from descending cortical inputs, indicating that ascending transformations are irreversible, resulting in increasingly lossy, higher-order representations across the auditory pathway. Rather, auditory cortex selectively modulates the nonlinear aspects of thalamic auditory responses and the functional coupling between subcortical neurons without affecting the linear encoding of sound. These findings reveal the fundamental role of subcortical transformations in shaping cortical responses.

2.
Elife ; 122023 10 16.
Article in English | MEDLINE | ID: mdl-37844199

ABSTRACT

Visual neurons respond selectively to features that become increasingly complex from the eyes to the cortex. Retinal neurons prefer flashing spots of light, primary visual cortical (V1) neurons prefer moving bars, and those in higher cortical areas favor complex features like moving textures. Previously, we showed that V1 simple cell tuning can be accounted for by a basic model implementing temporal prediction - representing features that predict future sensory input from past input (Singer et al., 2018). Here, we show that hierarchical application of temporal prediction can capture how tuning properties change across at least two levels of the visual system. This suggests that the brain does not efficiently represent all incoming information; instead, it selectively represents sensory inputs that help in predicting the future. When applied hierarchically, temporal prediction extracts time-varying features that depend on increasingly high-level statistics of the sensory input.


Subject(s)
Motion Perception , Visual Pathways , Visual Pathways/physiology , Motion Perception/physiology , Photic Stimulation , Neurons/physiology , Brain , Visual Perception/physiology
3.
Physiol Rev ; 103(2): 1025-1058, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36049112

ABSTRACT

Adaptation is an essential feature of auditory neurons, which reduces their responses to unchanging and recurring sounds and allows their response properties to be matched to the constantly changing statistics of sounds that reach the ears. As a consequence, processing in the auditory system highlights novel or unpredictable sounds and produces an efficient representation of the vast range of sounds that animals can perceive by continually adjusting the sensitivity and, to a lesser extent, the tuning properties of neurons to the most commonly encountered stimulus values. Together with attentional modulation, adaptation to sound statistics also helps to generate neural representations of sound that are tolerant to background noise and therefore plays a vital role in auditory scene analysis. In this review, we consider the diverse forms of adaptation that are found in the auditory system in terms of the processing levels at which they arise, the underlying neural mechanisms, and their impact on neural coding and perception. We also ask what the dynamics of adaptation, which can occur over multiple timescales, reveal about the statistical properties of the environment. Finally, we examine how adaptation to sound statistics is influenced by learning and experience and changes as a result of aging and hearing loss.


Subject(s)
Auditory Cortex , Animals , Acoustic Stimulation , Auditory Cortex/physiology , Auditory Perception/physiology , Noise , Adaptation, Physiological/physiology
4.
Elife ; 112022 05 26.
Article in English | MEDLINE | ID: mdl-35617119

ABSTRACT

In almost every natural environment, sounds are reflected by nearby objects, producing many delayed and distorted copies of the original sound, known as reverberation. Our brains usually cope well with reverberation, allowing us to recognize sound sources regardless of their environments. In contrast, reverberation can cause severe difficulties for speech recognition algorithms and hearing-impaired people. The present study examines how the auditory system copes with reverberation. We trained a linear model to recover a rich set of natural, anechoic sounds from their simulated reverberant counterparts. The model neurons achieved this by extending the inhibitory component of their receptive filters for more reverberant spaces, and did so in a frequency-dependent manner. These predicted effects were observed in the responses of auditory cortical neurons of ferrets in the same simulated reverberant environments. Together, these results suggest that auditory cortical neurons adapt to reverberation by adjusting their filtering properties in a manner consistent with dereverberation.


Subject(s)
Auditory Cortex , Speech Perception , Acoustic Stimulation , Adaptation, Physiological , Animals , Auditory Cortex/physiology , Ferrets , Humans , Sound , Speech Perception/physiology
5.
Proc Natl Acad Sci U S A ; 117(45): 28442-28451, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33097665

ABSTRACT

Sounds are processed by the ear and central auditory pathway. These processing steps are biologically complex, and many aspects of the transformation from sound waveforms to cortical response remain unclear. To understand this transformation, we combined models of the auditory periphery with various encoding models to predict auditory cortical responses to natural sounds. The cochlear models ranged from detailed biophysical simulations of the cochlea and auditory nerve to simple spectrogram-like approximations of the information processing in these structures. For three different stimulus sets, we tested the capacity of these models to predict the time course of single-unit neural responses recorded in ferret primary auditory cortex. We found that simple models based on a log-spaced spectrogram with approximately logarithmic compression perform similarly to the best-performing biophysically detailed models of the auditory periphery, and more consistently well over diverse natural and synthetic sounds. Furthermore, we demonstrated that including approximations of the three categories of auditory nerve fiber in these simple models can substantially improve prediction, particularly when combined with a network encoding model. Our findings imply that the properties of the auditory periphery and central pathway may together result in a simpler than expected functional transformation from ear to cortex. Thus, much of the detailed biological complexity seen in the auditory periphery does not appear to be important for understanding the cortical representation of sound.


Subject(s)
Auditory Cortex/physiology , Auditory Pathways/physiology , Sound , Acoustic Stimulation , Animals , Auditory Perception/physiology , Cochlea , Cochlear Nerve/physiology , Ferrets , Humans , Models, Neurological , Neurons/physiology , Speech
6.
J Neurophysiol ; 123(4): 1536-1551, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32186432

ABSTRACT

Contrast gain control is the systematic adjustment of neuronal gain in response to the contrast of sensory input. It is widely observed in sensory cortical areas and has been proposed to be a canonical neuronal computation. Here, we investigated whether shunting inhibition from parvalbumin-positive interneurons-a mechanism involved in gain control in visual cortex-also underlies contrast gain control in auditory cortex. First, we performed extracellular recordings in the auditory cortex of anesthetized male mice and optogenetically manipulated the activity of parvalbumin-positive interneurons while varying the contrast of the sensory input. We found that both activation and suppression of parvalbumin interneuron activity altered the overall gain of cortical neurons. However, despite these changes in overall gain, we found that manipulating parvalbumin interneuron activity did not alter the strength of contrast gain control in auditory cortex. Furthermore, parvalbumin-positive interneurons did not show increases in activity in response to high-contrast stimulation, which would be expected if they drive contrast gain control. Finally, we performed in vivo whole-cell recordings in auditory cortical neurons during high- and low-contrast stimulation and found that no increase in membrane conductance was observed during high-contrast stimulation. Taken together, these findings indicate that while parvalbumin-positive interneuron activity modulates the overall gain of auditory cortical responses, other mechanisms are primarily responsible for contrast gain control in this cortical area.NEW & NOTEWORTHY We investigated whether contrast gain control is mediated by shunting inhibition from parvalbumin-positive interneurons in auditory cortex. We performed extracellular and intracellular recordings in mouse auditory cortex while presenting sensory stimuli with varying contrasts and manipulated parvalbumin-positive interneuron activity using optogenetics. We show that while parvalbumin-positive interneuron activity modulates the gain of cortical responses, this activity is not the primary mechanism for contrast gain control in auditory cortex.


Subject(s)
Auditory Cortex/physiology , Interneurons/physiology , Neural Inhibition/physiology , Parvalbumins , Animals , Male , Mice , Optogenetics , Parvalbumins/metabolism , Patch-Clamp Techniques
7.
Nat Commun ; 11(1): 324, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949136

ABSTRACT

Neural adaptation enables sensory information to be represented optimally in the brain despite large fluctuations over time in the statistics of the environment. Auditory contrast gain control represents an important example, which is thought to arise primarily from cortical processing. Here we show that neurons in the auditory thalamus and midbrain of mice show robust contrast gain control, and that this is implemented independently of cortical activity. Although neurons at each level exhibit contrast gain control to similar degrees, adaptation time constants become longer at later stages of the processing hierarchy, resulting in progressively more stable representations. We also show that auditory discrimination thresholds in human listeners compensate for changes in contrast, and that the strength of this perceptual adaptation can be predicted from physiological measurements. Contrast adaptation is therefore a robust property of both the subcortical and cortical auditory system and accounts for the short-term adaptability of perceptual judgments.


Subject(s)
Auditory Cortex/physiology , Auditory Pathways/physiology , Auditory Perception/physiology , Mesencephalon/physiology , Neurons/physiology , Thalamus/physiology , Adaptation, Physiological/physiology , Animals , Auditory Threshold/physiology , Discrimination, Psychological , Electrophysiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Models, Animal , Models, Neurological , Noise , Optogenetics , Sound Spectrography
8.
PLoS Comput Biol ; 15(5): e1006618, 2019 05.
Article in English | MEDLINE | ID: mdl-31059503

ABSTRACT

Auditory neurons encode stimulus history, which is often modelled using a span of time-delays in a spectro-temporal receptive field (STRF). We propose an alternative model for the encoding of stimulus history, which we apply to extracellular recordings of neurons in the primary auditory cortex of anaesthetized ferrets. For a linear-non-linear STRF model (LN model) to achieve a high level of performance in predicting single unit neural responses to natural sounds in the primary auditory cortex, we found that it is necessary to include time delays going back at least 200 ms in the past. This is an unrealistic time span for biological delay lines. We therefore asked how much of this dependence on stimulus history can instead be explained by dynamical aspects of neurons. We constructed a neural-network model whose output is the weighted sum of units whose responses are determined by a dynamic firing-rate equation. The dynamic aspect performs low-pass filtering on each unit's response, providing an exponentially decaying memory whose time constant is individual to each unit. We find that this dynamic network (DNet) model, when fitted to the neural data using STRFs of only 25 ms duration, can achieve prediction performance on a held-out dataset comparable to the best performing LN model with STRFs of 200 ms duration. These findings suggest that integration due to the membrane time constants or other exponentially-decaying memory processes may underlie linear temporal receptive fields of neurons beyond 25 ms.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Acoustic Stimulation/methods , Action Potentials/physiology , Animals , Evoked Potentials, Auditory/physiology , Ferrets , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Nonlinear Dynamics
9.
F1000Res ; 72018.
Article in English | MEDLINE | ID: mdl-30345008

ABSTRACT

Our ability to make sense of the auditory world results from neural processing that begins in the ear, goes through multiple subcortical areas, and continues in the cortex. The specific contribution of the auditory cortex to this chain of processing is far from understood. Although many of the properties of neurons in the auditory cortex resemble those of subcortical neurons, they show somewhat more complex selectivity for sound features, which is likely to be important for the analysis of natural sounds, such as speech, in real-life listening conditions. Furthermore, recent work has shown that auditory cortical processing is highly context-dependent, integrates auditory inputs with other sensory and motor signals, depends on experience, and is shaped by cognitive demands, such as attention. Thus, in addition to being the locus for more complex sound selectivity, the auditory cortex is increasingly understood to be an integral part of the network of brain regions responsible for prediction, auditory perceptual decision-making, and learning. In this review, we focus on three key areas that are contributing to this understanding: the sound features that are preferentially represented by cortical neurons, the spatial organization of those preferences, and the cognitive roles of the auditory cortex.


Subject(s)
Auditory Cortex/physiology , Auditory Pathways , Auditory Perception , Humans , Neurons/physiology
10.
J Neurophysiol ; 120(4): 1872-1884, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30044164

ABSTRACT

The neocortex is thought to employ a number of canonical computations, but little is known about whether these computations rely on shared mechanisms across different neural populations. In recent years, the mouse has emerged as a powerful model organism for the dissection of the circuits and mechanisms underlying various aspects of neural processing and therefore provides an important avenue for research into putative canonical computations. One such computation is contrast gain control, the systematic adjustment of neural gain in accordance with the contrast of sensory input, which helps to construct neural representations that are robust to the presence of background stimuli. Here, we characterized contrast gain control in the mouse auditory cortex. We performed laminar extracellular recordings in the auditory cortex of the anesthetized mouse while varying the contrast of the sensory input. We observed that an increase in stimulus contrast resulted in a compensatory reduction in the gain of neural responses, leading to representations in the mouse auditory cortex that are largely contrast invariant. Contrast gain control was present in all cortical layers but was found to be strongest in deep layers, indicating that intracortical mechanisms may contribute to these gain changes. These results lay a foundation for investigations into the mechanisms underlying contrast adaptation in the mouse auditory cortex. NEW & NOTEWORTHY We investigated whether contrast gain control, the systematic reduction in neural gain in response to an increase in sensory contrast, exists in the mouse auditory cortex. We performed extracellular recordings in the mouse auditory cortex while presenting sensory stimuli with varying contrasts and found this form of processing was widespread. This finding provides evidence that contrast gain control may represent a canonical cortical computation and lays a foundation for investigations into the underlying mechanisms.


Subject(s)
Auditory Cortex/physiology , Auditory Perception , Animals , Auditory Cortex/cytology , Evoked Potentials, Auditory , Extracellular Space/physiology , Mice , Mice, Inbred C57BL , Neurons/physiology
11.
Elife ; 72018 06 18.
Article in English | MEDLINE | ID: mdl-29911971

ABSTRACT

Neurons in sensory cortex are tuned to diverse features in natural scenes. But what determines which features neurons become selective to? Here we explore the idea that neuronal selectivity is optimized to represent features in the recent sensory past that best predict immediate future inputs. We tested this hypothesis using simple feedforward neural networks, which were trained to predict the next few moments of video or audio in clips of natural scenes. The networks developed receptive fields that closely matched those of real cortical neurons in different mammalian species, including the oriented spatial tuning of primary visual cortex, the frequency selectivity of primary auditory cortex and, most notably, their temporal tuning properties. Furthermore, the better a network predicted future inputs the more closely its receptive fields resembled those in the brain. This suggests that sensory processing is optimized to extract those features with the most capacity to predict future input.


Subject(s)
Anticipation, Psychological , Auditory Cortex/physiology , Neural Networks, Computer , Sensory Receptor Cells/physiology , Visual Cortex/physiology , Acoustic Stimulation , Animals , Auditory Cortex/anatomy & histology , Computer Simulation , Mammals/anatomy & histology , Mammals/physiology , Photic Stimulation , Reaction Time/physiology , Sensory Receptor Cells/cytology , Video Recording , Visual Cortex/anatomy & histology
12.
PLoS Comput Biol ; 12(11): e1005113, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27835647

ABSTRACT

Cortical sensory neurons are commonly characterized using the receptive field, the linear dependence of their response on the stimulus. In primary auditory cortex neurons can be characterized by their spectrotemporal receptive fields, the spectral and temporal features of a sound that linearly drive a neuron. However, receptive fields do not capture the fact that the response of a cortical neuron results from the complex nonlinear network in which it is embedded. By fitting a nonlinear feedforward network model (a network receptive field) to cortical responses to natural sounds, we reveal that primary auditory cortical neurons are sensitive over a substantially larger spectrotemporal domain than is seen in their standard spectrotemporal receptive fields. Furthermore, the network receptive field, a parsimonious network consisting of 1-7 sub-receptive fields that interact nonlinearly, consistently better predicts neural responses to auditory stimuli than the standard receptive fields. The network receptive field reveals separate excitatory and inhibitory sub-fields with different nonlinear properties, and interaction of the sub-fields gives rise to important operations such as gain control and conjunctive feature detection. The conjunctive effects, where neurons respond only if several specific features are present together, enable increased selectivity for particular complex spectrotemporal structures, and may constitute an important stage in sound recognition. In conclusion, we demonstrate that fitting auditory cortical neural responses with feedforward network models expands on simple linear receptive field models in a manner that yields substantially improved predictive power and reveals key nonlinear aspects of cortical processing, while remaining easy to interpret in a physiological context.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Models, Neurological , Nerve Net/physiology , Neural Inhibition/physiology , Sensory Receptor Cells/physiology , Acoustic Stimulation/methods , Animals , Computer Simulation , Humans , Nonlinear Dynamics , Systems Integration
13.
Front Comput Neurosci ; 10: 10, 2016.
Article in English | MEDLINE | ID: mdl-26903851

ABSTRACT

Good metrics of the performance of a statistical or computational model are essential for model comparison and selection. Here, we address the design of performance metrics for models that aim to predict neural responses to sensory inputs. This is particularly difficult because the responses of sensory neurons are inherently variable, even in response to repeated presentations of identical stimuli. In this situation, standard metrics (such as the correlation coefficient) fail because they do not distinguish between explainable variance (the part of the neural response that is systematically dependent on the stimulus) and response variability (the part of the neural response that is not systematically dependent on the stimulus, and cannot be explained by modeling the stimulus-response relationship). As a result, models which perfectly describe the systematic stimulus-response relationship may appear to perform poorly. Two metrics have previously been proposed which account for this inherent variability: Signal Power Explained (SPE, Sahani and Linden, 2003), and the normalized correlation coefficient (CC norm , Hsu et al., 2004). Here, we analyze these metrics, and show that they are intimately related. However, SPE has no lower bound, and we show that, even for good models, SPE can yield negative values that are difficult to interpret. CC norm is better behaved in that it is effectively bounded between -1 and 1, and values below zero are very rare in practice and easy to interpret. However, it was hitherto not possible to calculate CC norm directly; instead, it was estimated using imprecise and laborious resampling techniques. Here, we identify a new approach that can calculate CC norm quickly and accurately. As a result, we argue that it is now a better choice of metric than SPE to accurately evaluate the performance of neural models.

14.
J Neurosci ; 36(2): 280-9, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26758822

ABSTRACT

Adaptation to stimulus statistics, such as the mean level and contrast of recently heard sounds, has been demonstrated at various levels of the auditory pathway. It allows the nervous system to operate over the wide range of intensities and contrasts found in the natural world. Yet current standard models of the response properties of auditory neurons do not incorporate such adaptation. Here we present a model of neural responses in the ferret auditory cortex (the IC Adaptation model), which takes into account adaptation to mean sound level at a lower level of processing: the inferior colliculus (IC). The model performs high-pass filtering with frequency-dependent time constants on the sound spectrogram, followed by half-wave rectification, and passes the output to a standard linear-nonlinear (LN) model. We find that the IC Adaptation model consistently predicts cortical responses better than the standard LN model for a range of synthetic and natural stimuli. The IC Adaptation model introduces no extra free parameters, so it improves predictions without sacrificing parsimony. Furthermore, the time constants of adaptation in the IC appear to be matched to the statistics of natural sounds, suggesting that neurons in the auditory midbrain predict the mean level of future sounds and adapt their responses appropriately. SIGNIFICANCE STATEMENT: An ability to accurately predict how sensory neurons respond to novel stimuli is critical if we are to fully characterize their response properties. Attempts to model these responses have had a distinguished history, but it has proven difficult to improve their predictive power significantly beyond that of simple, mostly linear receptive field models. Here we show that auditory cortex receptive field models benefit from a nonlinear preprocessing stage that replicates known adaptation properties of the auditory midbrain. This improves their predictive power across a wide range of stimuli but keeps model complexity low as it introduces no new free parameters. Incorporating the adaptive coding properties of neurons will likely improve receptive field models in other sensory modalities too.


Subject(s)
Adaptation, Physiological/physiology , Auditory Cortex/physiology , Auditory Perception/physiology , Mesencephalon/physiology , Sound , Acoustic Stimulation , Animals , Auditory Pathways/physiology , Female , Ferrets , Linear Models , Male , Models, Neurological , Sound Spectrography
15.
J Physiol ; 592(16): 3371-81, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24907308

ABSTRACT

Contrast gain control has recently been identified as a fundamental property of the auditory system. Electrophysiological recordings in ferrets have shown that neurons continuously adjust their gain (their sensitivity to change in sound level) in response to the contrast of sounds that are heard. At the level of the auditory cortex, these gain changes partly compensate for changes in sound contrast. This means that sounds which are structurally similar, but have different contrasts, have similar neuronal representations in the auditory cortex. As a result, the cortical representation is relatively invariant to stimulus contrast and robust to the presence of noise in the stimulus. In the inferior colliculus (an important subcortical auditory structure), gain changes are less reliably compensatory, suggesting that contrast- and noise-invariant representations are constructed gradually as one ascends the auditory pathway. In addition to noise invariance, contrast gain control provides a variety of computational advantages over static neuronal representations; it makes efficient use of neuronal dynamic range, may contribute to redundancy-reducing, sparse codes for sound and allows for simpler decoding of population responses. The circuits underlying auditory contrast gain control are still under investigation. As in the visual system, these circuits may be modulated by factors other than stimulus contrast, forming a potential neural substrate for mediating the effects of attention as well as interactions between the senses.


Subject(s)
Auditory Cortex/physiology , Auditory Perception , Brain Stem/physiology , Hearing , Noise , Animals , Humans
16.
PLoS Biol ; 11(11): e1001710, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24265596

ABSTRACT

Identifying behaviorally relevant sounds in the presence of background noise is one of the most important and poorly understood challenges faced by the auditory system. An elegant solution to this problem would be for the auditory system to represent sounds in a noise-invariant fashion. Since a major effect of background noise is to alter the statistics of the sounds reaching the ear, noise-invariant representations could be promoted by neurons adapting to stimulus statistics. Here we investigated the extent of neuronal adaptation to the mean and contrast of auditory stimulation as one ascends the auditory pathway. We measured these forms of adaptation by presenting complex synthetic and natural sounds, recording neuronal responses in the inferior colliculus and primary fields of the auditory cortex of anaesthetized ferrets, and comparing these responses with a sophisticated model of the auditory nerve. We find that the strength of both forms of adaptation increases as one ascends the auditory pathway. To investigate whether this adaptation to stimulus statistics contributes to the construction of noise-invariant sound representations, we also presented complex, natural sounds embedded in stationary noise, and used a decoding approach to assess the noise tolerance of the neuronal population code. We find that the code for complex sounds in the periphery is affected more by the addition of noise than the cortical code. We also find that noise tolerance is correlated with adaptation to stimulus statistics, so that populations that show the strongest adaptation to stimulus statistics are also the most noise-tolerant. This suggests that the increase in adaptation to sound statistics from auditory nerve to midbrain to cortex is an important stage in the construction of noise-invariant sound representations in the higher auditory brain.


Subject(s)
Cochlear Nerve/physiology , Acoustic Stimulation , Adaptation, Physiological , Animals , Auditory Cortex/physiology , Auditory Perception , Computer Simulation , Female , Ferrets , Hearing/physiology , Humans , Male , Models, Neurological , Neural Conduction , Noise , Signal-To-Noise Ratio
17.
J Neurosci ; 32(33): 11271-84, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22895711

ABSTRACT

Auditory neurons are often described in terms of their spectrotemporal receptive fields (STRFs). These map the relationship between features of the sound spectrogram and firing rates of neurons. Recently, we showed that neurons in the primary fields of the ferret auditory cortex are also subject to gain control: when sounds undergo smaller fluctuations in their level over time, the neurons become more sensitive to small-level changes (Rabinowitz et al., 2011). Just as STRFs measure the spectrotemporal features of a sound that lead to changes in the firing rates of neurons, in this study, we sought to estimate the spectrotemporal regions in which sound statistics lead to changes in the gain of neurons. We designed a set of stimuli with complex contrast profiles to characterize these regions. This allowed us to estimate the STRFs of cortical neurons alongside a set of spectrotemporal contrast kernels. We find that these two sets of integration windows match up: the extent to which a stimulus feature causes the firing rate of a neuron to change is strongly correlated with the extent to which the contrast of that feature modulates the gain of the neuron. Adding contrast kernels to STRF models also yields considerable improvements in the ability to capture and predict how auditory cortical neurons respond to statistically complex sounds.


Subject(s)
Action Potentials/physiology , Auditory Cortex/cytology , Auditory Perception/physiology , Models, Neurological , Neurons/physiology , Acoustic Stimulation/methods , Animals , Computer Simulation , Female , Ferrets , Male , Nonlinear Dynamics , Sound
18.
Vision Res ; 54: 49-60, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22230381

ABSTRACT

Neuronal populations in the primary visual cortex (V1) of mammals exhibit contrast normalization. Neurons that respond strongly to simple visual stimuli - such as sinusoidal gratings - respond less well to the same stimuli when they are presented as part of a more complex stimulus which also excites other, neighboring neurons. This phenomenon is generally attributed to generalized patterns of inhibitory connections between nearby V1 neurons. The Bienenstock, Cooper and Munro (BCM) rule is a neural network learning rule that, when trained on natural images, produces model neurons which, individually, have many tuning properties in common with real V1 neurons. However, when viewed as a population, a BCM network is very different from V1 - each member of the BCM population tends to respond to the same dominant features of visual input, producing an incomplete, highly redundant code for visual information. Here, we demonstrate that, by adding contrast normalization into the BCM rule, we arrive at a neurally-plausible Hebbian learning rule that can learn an efficient sparse, overcomplete representation that is a better model for stimulus selectivity in V1. This suggests that one role of contrast normalization in V1 is to guide the neonatal development of receptive fields, so that neurons respond to different features of visual input.


Subject(s)
Contrast Sensitivity/physiology , Models, Neurological , Visual Cortex/physiology , Visual Fields/physiology , Visual Perception/physiology , Humans , Retina/physiology
19.
Neuron ; 70(6): 1178-91, 2011 Jun 23.
Article in English | MEDLINE | ID: mdl-21689603

ABSTRACT

The auditory system must represent sounds with a wide range of statistical properties. One important property is the spectrotemporal contrast in the acoustic environment: the variation in sound pressure in each frequency band, relative to the mean pressure. We show that neurons in ferret auditory cortex rescale their gain to partially compensate for the spectrotemporal contrast of recent stimulation. When contrast is low, neurons increase their gain, becoming more sensitive to small changes in the stimulus, although the effectiveness of contrast gain control is reduced at low mean levels. Gain is primarily determined by contrast near each neuron's preferred frequency, but there is also a contribution from contrast in more distant frequency bands. Neural responses are modulated by contrast over timescales of ∼100 ms. By using contrast gain control to expand or compress the representation of its inputs, the auditory system may be seeking an efficient coding of natural sounds.


Subject(s)
Auditory Cortex/physiology , Auditory Threshold/physiology , Models, Neurological , Neurons/physiology , Pitch Perception/physiology , Acoustic Stimulation , Adaptation, Physiological , Animals , Auditory Cortex/cytology , Discrimination, Psychological/physiology , Electrophysiology , Female , Ferrets , Male , Sound Spectrography
20.
J Neurophysiol ; 105(6): 2907-19, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21471391

ABSTRACT

Theoretical studies of mammalian cortex argue that efficient neural codes should be sparse. However, theoretical and experimental studies have used different definitions of the term "sparse" leading to three assumptions about the nature of sparse codes. First, codes that have high lifetime sparseness require few action potentials. Second, lifetime-sparse codes are also population-sparse. Third, neural codes are optimized to maximize lifetime sparseness. Here, we examine these assumptions in detail and test their validity in primate visual cortex. We show that lifetime and population sparseness are not necessarily correlated and that a code may have high lifetime sparseness regardless of how many action potentials it uses. We measure lifetime sparseness during presentation of natural images in three areas of macaque visual cortex, V1, V2, and V4. We find that lifetime sparseness does not increase across the visual hierarchy. This suggests that the neural code is not simply optimized to maximize lifetime sparseness. We also find that firing rates during a challenging visual task are higher than theoretical values based on metabolic limits and that responses in V1, V2, and V4 are well-described by exponential distributions. These findings are consistent with the hypothesis that neurons are optimized to maximize information transmission subject to metabolic constraints on mean firing rate.


Subject(s)
Brain Mapping , Neurons/physiology , Visual Cortex/cytology , Visual Cortex/physiology , Action Potentials/physiology , Animals , Attention/physiology , Electrophysiology , Eye Movements/physiology , Macaca mulatta , Male , Models, Neurological , Photic Stimulation , Reaction Time/physiology , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...