Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 48(14): 3749-3752, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37450741

ABSTRACT

We investigate the impact of collisions with two-frequency photonic molecules aiming to observe internal dynamic behavior and challenge their strong robustness. Versatile interaction scenarios show intriguing state changes expressed through modifications of the resulting state such as temporal compression and unknown collision-induced spectral tunneling. These processes show potential for efficient coherent supercontinuum generation and all-optical manipulation.


Subject(s)
Fiber Optic Technology , Photons , Fiber Optic Technology/methods
2.
Opt Lett ; 46(16): 3921-3924, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34388775

ABSTRACT

We reveal the crucial role played by the frequency dependence of the nonlinear parameter on the evolution of femtosecond solitons inside photonic crystal fibers (PCFs). We show that the conventional approach based on the self-steepening effect is not appropriate when such fibers have two zero-dispersion wavelengths, and several higher-order nonlinear terms must be included for realistic modeling of the nonlinear phenomena in PCFs. These terms affect not only the Raman-induced wavelength shift of a soliton but also impact its shedding of dispersive radiation.

3.
Phys Rev Lett ; 123(24): 243905, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31922846

ABSTRACT

We demonstrate a peculiar mechanism for the formation of bound states of light pulses of substantially different optical frequencies, in which pulses are strongly bound across a vast frequency gap. This is enabled by a propagation constant with two separate regions of anomalous dispersion. The resulting soliton compound exhibits moleculelike binding energy, vibration, and radiation and can be understood as a mutual trapping providing a striking analogy to quantum mechanics. The phenomenon constitutes an intriguing case of two light waves mutually affecting and controlling each other.

SELECTION OF CITATIONS
SEARCH DETAIL
...