Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Open ; 3(5): 326-31, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24705016

ABSTRACT

Small molecule inhibitors of clathrin-mediated endocytosis are highly desired for the dissection of membrane trafficking pathways in the lab and for potential use as anti-infectives in the clinic. One inhibition strategy is to prevent clathrin from contacting adaptor proteins so that clathrin-mediated endocytosis cannot occur. "Pitstop" compounds have been developed that block only one of the four functional interaction sites on the N-terminal domain of clathrin heavy chain. Despite this limitation, Pitstop 2 causes profound inhibition of clathrin-mediated endocytosis. In this study, we probed for non-specific activity of Pitstop 2 by examining its action in cells expressing clathrin heavy chain harbouring mutations in the N-terminal domain interaction sites. We conclude that the inhibition observed with this compound is due to non-specificity, i.e. it causes inhibition away from its proposed mode of action. We recommend that these compounds be used with caution in cells and that they should not be used to conclude anything of the function of clathrin's N-terminal domain.

2.
Curr Biol ; 22(15): 1435-9, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22727701

ABSTRACT

At small synapses in the brain, clathrin-mediated endocytosis (CME) is the dominant mode of synaptic vesicle retrieval following weak stimulation [1-4]. Clathrin cannot bind to membranes or cargo directly and instead uses adaptor proteins to do so [5]. Although the involvement of clathrin and dynamin in synaptic vesicle retrieval is clear, it is unknown which adaptor proteins are used to sort the essential components into the vesicle [1, 4, 6]. In nonneuronal cells, CME of the majority of transmembrane receptors is either directly or indirectly via the heterotetrameric AP-2 complex [5]. In neurons, RNAi of the µ2 subunit of AP-2 resulted in only minor inhibition of synaptic vesicle retrieval [7, 8], a result echoed in C. elegans [9]. These results suggest that alternative adaptors may be employed for vesicle retrieval. Here, we tested which adaptors are required for vesicle retrieval at hippocampal synapses using a targeted RNAi screen coupled with optical measurements. Stonin 2 emerged as a major adaptor, whereas AP-2 played only a minor role in endocytosis at the synapse. Moreover, using chemically induced rerouting of stonin 2 to mitochondria it was possible to switch endocytically competent synapses to an impaired state on a timescale of minutes.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Clathrin-Coated Vesicles/physiology , Endocytosis/physiology , Hippocampus/physiology , Synaptic Vesicles/physiology , Adaptor Protein Complex 2/metabolism , Animals , Cells, Cultured , Mitochondria/metabolism , RNA Interference , Rats
3.
Proc Natl Acad Sci U S A ; 109(17): 6572-7, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22493256

ABSTRACT

A long-standing paradigm in cell biology is the shutdown of endocytosis during mitosis. There is consensus that transferrin uptake is inhibited after entry into prophase and that it resumes in telophase. A recent study proposed that endocytosis is continuous throughout the cell cycle and that the observed inhibition of transferrin uptake is due to a decrease in available transferrin receptor at the cell surface, and not to a shutdown of endocytosis. This challenge to the established view is gradually becoming accepted. Because of this controversy, we revisited the question of endocytic activity during mitosis. Using an antibody uptake assay and controlling for potential changes in surface receptor density, we demonstrate the strong inhibition of endocytosis in mitosis of CD8 chimeras containing any of the three major internalization motifs for clathrin-mediated endocytosis (YXXΦ, [DE]XXXL[LI], or FXNPXY) or a CD8 protein with the cytoplasmic tail of the cation-independent mannose 6-phosphate receptor. The shutdown is not gradual: We describe a binary switch from endocytosis being "on" in interphase to "off" in mitosis as cells traverse the G(2)/M checkpoint. In addition, we show that the inhibition of transferrin uptake in mitosis occurs despite abundant transferrin receptor at the surface of HeLa cells. Our study finds no support for the recent idea that endocytosis continues during mitosis, and we conclude that endocytosis is temporarily shutdown during early mitosis.


Subject(s)
Clathrin/physiology , Endocytosis/physiology , Mitosis/physiology , Flow Cytometry , Fluorescent Antibody Technique , HeLa Cells , Humans , Microscopy, Fluorescence , Receptors, Transferrin/metabolism
4.
J Biol Chem ; 287(12): 9429-40, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22262842

ABSTRACT

CTLA-4 is one of the most important negative regulators of the T cell immune response. However, the subcellular distribution of CTLA-4 is unusual for a receptor that interacts with cell surface transmembrane ligands in that CTLA-4 is rapidly internalized from the plasma membrane. It has been proposed that T cell activation can lead to stabilization of CTLA-4 expression at the cell surface. Here we have analyzed in detail the internalization, recycling, and degradation of CTLA-4. We demonstrate that CTLA-4 is rapidly internalized from the plasma membrane in a clathrin- and dynamin-dependent manner driven by the well characterized YVKM trafficking motif. Furthermore, we show that once internalized, CTLA-4 co-localizes with markers of recycling endosomes and is recycled to the plasma membrane. Although we observed limited co-localization of CTLA-4 with lysosomal markers, CTLA-4 was nonetheless degraded in a manner inhibited by lysosomal blockade. T cell activation stimulated mobilization of CTLA-4, as judged by an increase in cell surface expression; however, this pool of CTLA-4 continued to endocytose and was not stably retained at the cell surface. These data support a model of trafficking whereby CTLA-4 is constitutively internalized in a ligand-independent manner undergoing both recycling and degradation. Stimulation of T cells increases CTLA-4 turnover at the plasma membrane; however, CTLA-4 endocytosis continues and is not stabilized during activation of human T cells. These findings emphasize the importance of clathrin-mediated endocytosis in regulating CTLA-4 trafficking throughout T cell activation.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CTLA-4 Antigen/metabolism , Endocytosis , Lymphocyte Activation , Animals , CD4-Positive T-Lymphocytes/immunology , CHO Cells , Cell Membrane/metabolism , Cells, Cultured , Clathrin/metabolism , Cricetinae , Endosomes/metabolism , Humans , Protein Transport
5.
Traffic ; 13(1): 70-81, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21939487

ABSTRACT

In clathrin-mediated membrane traffic, clathrin does not bind directly to cargo and instead binds to adaptors that mediate this function. For endocytosis, the main adaptor is the adaptor protein (AP)-2 complex, but it is uncertain how clathrin contacts AP-2. Here we tested in human cells the importance of the three binding sites that have been identified so far on the N-terminal domain (NTD) of clathrin. We find that mutation of each of the three sites on the NTD, alone or in combination, does not block clathrin/AP-2-mediated endocytosis in the same way as deletion of the NTD. We report here the fourth and final site on the NTD that is required for clathrin/AP-2-mediated endocytic function. Each of the four interaction sites can operate alone to mediate endocytosis. The observed functional redundancy between interaction sites on the NTD explains how productivity of clathrin-coated vesicle formation is ensured.


Subject(s)
Adaptor Protein Complex 2/metabolism , Cell Membrane/metabolism , Clathrin Heavy Chains/metabolism , Endocytosis , Adaptor Protein Complex 2/genetics , Amino Acid Sequence , Animals , Binding Sites , Clathrin Heavy Chains/genetics , Flow Cytometry , Fluorescent Antibody Technique , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Microscopy, Confocal , Models, Molecular , Molecular Sequence Data , Mutation , Protein Transport , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...