Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Comp Orthop Traumatol ; 36(5): 250-256, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37130556

ABSTRACT

OBJECTIVE: The aim of this study was to compare the interfragmentary compressive force and area of compression generated by cortical screws inserted as either a lag screw or position screw in simulated lateral humeral condylar fractures. STUDY DESIGN: Ex vivo biomechanical study. MATERIALS AND METHODS: Thirteen pairs of cadaveric humeri from skeletally mature Merinos with simulated lateral humeral condylar fractures were used. Pressure sensitive film was inserted into the interfragmentary interface prior to fracture reduction with fragment forceps. A cortical screw was inserted as a lag screw or a position screw and tightened to 1.8Nm. Interfragmentary compression and area of compression were quantified and compared between the two treatments groups at three time points. RESULTS: After fracture reduction using fragment forceps (Time point 1: T1), there was no significant difference in interfragmentary compression and area of compression between the two treatments. A combination of fragment forceps and a cortical screw inserted as a lag screw (Time point 2: T2) produced significantly greater interfragmentary compression and area of compression compared with the same screw inserted as a positional screw. After removal of the fragment forceps, leaving only the cortical screw (Time point 3: T3), both the interfragmentary compression and area of compression remain significantly greater in the lag screw group. CONCLUSION: Lag screws generate a greater force of compression and area of compression compared with position screws in this mature ovine humeral condylar fracture model.


Subject(s)
Humeral Fractures , Sheep Diseases , Animals , Sheep/surgery , Fracture Fixation, Internal/veterinary , Bone Screws/veterinary , Humeral Fractures/surgery , Humeral Fractures/veterinary , Fracture Fixation/veterinary , Humerus , Biomechanical Phenomena
2.
Materials (Basel) ; 15(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35207887

ABSTRACT

A biphasic calcium phosphate with submicron needle-shaped surface topography combined with a novel polyethylene glycol/polylactic acid triblock copolymer binder (BCP-EP) was investigated in this study. This study aims to evaluate the composition, degradation mechanism and bioactivity of BCP-EP in vitro, and its in vivo performance as an autograft bone graft (ABG) extender in a rabbit Posterolateral Fusion (PLF) model. The characterization of BCP-EP and its in vitro degradation products showed that the binder hydrolyses rapidly into lactic acid, lactide oligomers and unaltered PEG (polyethylene glycol) without altering the BCP granules and their characteristic submicron needle-shaped surface topography. The bioactivity of BCP-EP after immersion in SBF revealed a progressive surface mineralization. In vivo, BCP-EP was assessed in a rabbit PLF model by radiography, manual palpation, histology and histomorphometry up to 12 weeks post-implantation. Twenty skeletally mature New Zealand (NZ) White Rabbits underwent single-level intertransverse process PLF surgery at L4/5 using (1) autologous bone graft (ABG) alone or (2) by mixing in a 1:1 ratio with BCP-EP (BCP-EP/ABG). After 3 days of implantation, histology showed the BCP granules were in direct contact with tissues and cells. After 12 weeks, material resorption and mature bone formation were observed, which resulted in solid fusion between the two transverse processes, following all assessment methods. BCP-EP/ABG showed comparable fusion rates with ABG at 12 weeks, and no graft migration or adverse reaction were noted at the implantation site nor in distant organs.

3.
Biomaterials ; 279: 121206, 2021 12.
Article in English | MEDLINE | ID: mdl-34715639

ABSTRACT

Optimization of porous titanium alloy scaffolds designed for orthopedic implants requires balancing mechanical properties and osseointegrative performance. The tradeoff between scaffold porosity and the stiffness/strength must be optimized towards the goal to improve long term load sharing while simultaneously promoting osseointegration. Osseointegration into porous titanium implants covering a wide range of porosity (0%-90%) and manufactured by laser powder bed fusion (LPBF) was evaluated with an established ovine cortical and cancellous defect model. Direct apposition and remodeling of woven bone was observed at the implant surface, as well as bone formation within the interstices of the pores. A linear relationship was observed between the porosity and benchtop mechanical properties of the scaffolds, while a non-linear relationship was observed between porosity and the ex vivo cortical bone-implant interfacial shear strength. Our study supports the hypothesis of porosity dependent performance tradeoffs, and establishes generalized relationships between porosity and performance for design of topological optimized implants for osseointegration. These results are widely applicable for orthopedic implant design for arthroplasty components, arthrodesis devices such as spinal interbody fusion implants, and patient matched implants for treatment of large bone defects.


Subject(s)
Osseointegration , Prostheses and Implants , Alloys , Animals , Humans , Porosity , Sheep , Titanium
5.
Spine J ; 20(11): 1876-1886, 2020 11.
Article in English | MEDLINE | ID: mdl-32645503

ABSTRACT

BACKGROUND CONTEXT: The interface and interactions between an interbody cage, graft material, and host bone can all participate in the fusion. Shortcomings of Poly(aryl-ether-ether-ketone) interbody cages have been addressed with novel titanium surfaces. Titanium surfaces paired with macroscale topography features on the endplates and within the aperture may provide additional benefits. PURPOSE: To evaluate the influence of cage design parameters on interbody fusion in a large animal preclinical model. STUDY DESIGN/SETTING: A comparative preclinical large animal model was performed to evaluate how macroscale topography features of an interbody cage can facilitate early integration between the host bone, graft material, and interbody cage and these effects on biomechanical stability and fusion. METHODS: Forty single level interbody fusions (L4-L5) using iliac crest autograft and bilateral pedicle screw fixation were performed in adult sheep to evaluate the effect of undercut macrostructure topography features of an interbody cage on the endplates and within the aperture. Fusions were evaluated at 6 and 12 weeks (n=10 per group) using radiography, microcomputed tomography, biomechanical integrity, and histology endpoints. RESULTS: The presence of the undercut macrostructures present on the endplates and within the aperture statistically improved biomechanical integrity at 6 and 12 weeks compared with controls. Microcomputed tomography and histology demonstrated bony interdigitation within the endplate and aperture features contributing to the improvement in properties. CONCLUSIONS: The present study demonstrates that Poly(aryl-ether-ether-ketone) implants with titanium surfaces can be augmented by undercut macrostructures present on the endplates and within the aperture to provide opportunities for a series of anchoring points that, with new bone formation and remodelling, result in earlier and improved biomechanical integrity of the treated level. CLINICAL SIGNIFICANCE: This preclinical study showed that bone interdigitation with the undercut macrostructures present on the endplates and within the aperture resulted in improved fusion and biomechanical stability in a clinically relevant spinal fusion model. Future clinical study is warranted to evaluate such implants' performance in humans.


Subject(s)
Spinal Fusion , Animals , Biomechanical Phenomena , Ilium , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Prostheses and Implants , Sheep , Titanium , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...