Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Inorg Biochem ; 136: 47-56, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24747360

ABSTRACT

Vanadium compounds exert various insulin-mimetic and anti-diabetic effects both in vitro and in vivo. Vanadium(III, IV, V)-chlorodipicolinate (Vdipic-Cl) compounds, including H[V(III)(dipic-Cl)2]·5H2O (V3dipic-Cl), V(IV)O(dipic-Cl)(H2O)2 (V4dipic-Cl) and K[V(V)O2(dipic-Cl)] (V5dipic-Cl), were synthesized with the indicated oxidation states. The present study was conducted to investigate if chemical valence and anti-oxidation effects of vanadium compounds are involved in the anti-diabetic effects observed in streptozotocin (STZ)-induced diabetic rats treated with these vanadium compounds. V3dipic-Cl, V4dipic-Cl, V5dipic-Cl, inorganic vanadium salts vanadyl sulfate (VOSO4) or sodium metavanadate (NaVO3) were orally administered in drinking water (50 µgV/ml) to STZ-induced diabetic rats for 28 days. The results showed that Vdipic-Cl treatment significantly improved hyperglycemia and glucose intolerance, as well as increased hepatic glycogen synthesis in diabetic rats. The mRNA levels of key glycolytic enzymes in liver, phosphoenolpyruvate carboxykinase (PEPCK), glucokinase (GK), and L-pyruvate kinase (L-PK) altered in diabetic animals were significantly restored towards normal values by treatment with some of the vanadium compounds. Moreover, the diabetes elevated activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) in serum were significantly decreased after treatment with Vdipic-Cl complexes. Furthermore, treatment of diabetic rats with V4dipic-Cl and V5dipic-Cl compounds significantly reduced malondialdehyde (MDA) production and increased glutathione peroxidase (GSH-Px) and catalase (CAT) activities. These data suggest that vanadium compounds with the indicated chemical valence promote glycogen synthesis and recover suppressed glycolysis in the liver of diabetic rats due to their capacity to reduce oxidative stress by stimulating antioxidant enzymes.


Subject(s)
Antioxidants/metabolism , Diabetes Mellitus, Experimental/drug therapy , Glycolysis/drug effects , Hypoglycemic Agents/pharmacology , Liver/metabolism , Picolinic Acids/pharmacology , Vanadium Compounds/pharmacology , Animals , Blood Glucose , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Gene Expression , Glycogen/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lipid Peroxidation , Liver/drug effects , Male , Malondialdehyde/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Rats, Wistar , Streptozocin
2.
Metallomics ; 5(11): 1491-502, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23982218

ABSTRACT

Vanadium, abbreviated V, is an early transition metal that readily forms coordination complexes with a variety of biological products such as proteins, metabolites, membranes and other structures. The formation of coordination complexes stabilizes metal ions, which in turn impacts the biodistribution of the metal. To understand the biodistribution of V, V in oxidation state iv in the form of vanadyl sulfate (25, 50, 100 mg V daily) was given orally for 6 weeks to 16 persons with type 2 diabetes. Elemental V was determined using Graphite Furnas Atomic Absorption Spectrometry against known concentrations of V in serum, blood or urine. Peak serum V levels were 15.4 ± 6.5, 81.7 ± 40 and 319 ± 268 ng ml(-1) respectively, and mean peak serum V was positively correlated with dose administered (r = 0.992, p = 0.079), although large inter-individual variability was found. Total serum V concentration distribution fit a one compartment open model with a first order rate constant for excretion with mean half times of 4.7 ± 1.6 days and 4.6 ± 2.5 days for the 50 and 100 mg V dose groups respectively. At steady state, 24 hour urinary V output was 0.18 ± 0.24 and 0.97 ± 0.84 mg in the 50 and 100 mg V groups respectively, consistent with absorption of 1 percent or less of the administered dose. Peak V in blood and serum were positively correlated (r = 0.971, p < 0.0005). The serum to blood V ratio for the patients receiving 100 mg V was 1.7 ± 0.45. Regression analysis showed that glycohemoglobin was a negative predictor of the natural log(ln) peak serum V (R(2) = 0.40, p = 0.009) and a positive predictor of the euglycemic-hyperinsulinemic clamp results at high insulin values (R(2) = 0.39, p = 0.010). Insulin sensitivity measured by euglycemic-hyperinsulinemic clamp was not significantly correlated with ln peak serum V. Globulin and glycohemoglobin levels taken together were negative predictors of fasting blood glucose (R(2) = 0.49, p = 0.013). Although V accumulation in serum was dose-dependent, no correlation between total serum V concentration and the insulin-like response was found in this first attempt to correlate anti-diabetic activity with total serum V. This study suggests that V pools other than total serum V are likely related to the insulin-like effect of this metal. These results, obtained in diabetic patients, document the need for consideration of the coordination chemistry of metabolites and proteins with vanadium in anti-diabetic vanadium complexes.


Subject(s)
Diabetes Mellitus, Type 2/blood , Hypoglycemic Agents/therapeutic use , Vanadium Compounds/therapeutic use , Administration, Oral , Adult , Aged , Blood Glucose/drug effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/urine , Female , Globulins , Glycated Hemoglobin/metabolism , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/urine , Male , Middle Aged , Regression Analysis , Vanadium Compounds/administration & dosage
3.
Coord Chem Rev ; 255(19-20): 2258-2269, 2011 Oct.
Article in English | MEDLINE | ID: mdl-23049138

ABSTRACT

The effects of oral treatment of rats with streptozotocin-induced diabetes with a range of vanadium dipicolinate complexes (Vdipic) and derivatives are reviewed. Structure-reactivity relationships are explored aiming to correlate properties such as stability, to their insulin-enhancing effects. Three types of modifications are investigated; first, substitutions on the aromatic ring, second, coordination of a hydroxylamido group to the vanadium, and third, changes in the oxidation state of the vanadium ion. These studies allowed us to address the importance of coordination chemistry, and redox chemistry, as modes of action. Dipicolinate was originally chosen as a ligand because the dipicolinatooxovanadium(V) complex (V5dipic), is a potent inhibitor of phosphatases. The effect of vanadium oxidation state (3, 4 or 5), on the insulin-enhancing properties was studied in both the Vdipic and VdipicCl series. Effects on blood glucose, body weight, serum lipids, alkaline phosphatase and aspartate transaminase were selectively monitored. Statistically distinct differences in activity were found, however, the trends observed were not the same in the Vdipic and VdipicCl series. Interperitoneal administration of the Vdipic series was used to compare the effect of administration mode. Correlations were observed for blood vanadium and plasma glucose levels after V5dipic treatment, but not after treatment with corresponding V4dipic and V3dipic complexes. Modifications of the aromatic ring structure with chloride, amine or hydroxyl groups had limited effects. Global gene expression was measured using Affymetrix oligonucleotide chips. All diabetic animals treated with hydroxyl substituted V5dipic (V5dipicOH) and some diabetic rats treated with vanadyl sulfate had normalized hyperlipidemia yet uncontrolled hyperglycemia and showed abnormal gene expression patterns. In contrast to the normal gene expression profiles previously reported for some diabetic rats treated with vanadyl sulfate, where both hyperlipidemia and hyperglycemia were normalized. Modification of the metal, changing the coordination chemistry to form a hydroxylamine ternary complex, had the most influence on the anti-diabetic action. Vanadium absorption into serum was determined by atomic absorption spectroscopy for selected vanadium complexes. Only diabetic rats treated with the ternary V5dipicOH hydroxylamine complex showed statistically significant increases in accumulation of vanadium into serum compared to diabetic rats treated with vanadyl sulfate. The chemistry and physical properties of the Vdipic complexes correlated with their anti-diabetic properties. Here, we propose that compound stability and ability to interact with cellular redox reactions are key components for the insulin-enhancing activity of vanadium compounds. Specifically, we found that the most overall effective anti-diabetic Vdipic compounds were obtained when the compound administered had an increased coordination number in the vanadium complex.

4.
Inorg Chem ; 49(9): 4245-56, 2010 May 03.
Article in English | MEDLINE | ID: mdl-20359175

ABSTRACT

Although dogma states that vanadate is readily reduced by glutathione, cysteine, and other thiols, there are several examples documenting that vanadium(V)-sulfur complexes can form and be observed. This conundrum has impacted life scientists for more than two decades. Investigation of this problem requires an understanding of both the complexes that form from vanadium(IV) and (V) and a representative thiol in aqueous solution. The reactions of vanadate and hydrated vanadyl cation with 2-mercaptoethanol have been investigated using multinuclear NMR, electron paramagnetic resonance (EPR), and UV-vis spectroscopy. Vanadate forms a stable complex of 2:2 stoichiometry with 2-mercaptoethanol at neutral and alkaline pH. In contrast, vanadate can oxidize 2-mercaptoethanol; this process is favored at low pH and high solute concentrations. The complex that forms between aqueous vanadium(IV) and 2-mercaptoethanol has a 1:2 stoichiometry and can be observed at high pH and high 2-mercaptoethanol concentration. The solution structures have been deduced based on coordination induced chemical shifts and speciation diagrams prepared. This work demonstrates that both vanadium(IV) and (V)-thiol complexes form and that redox chemistry also takes place. Whether reduction of vanadate takes place is governed by a combination of parameters: pH, solute- and vanadate-concentrations and the presence of other complexing ligands. On the basis of these results it is now possible to understand the distribution of vanadium in oxidation states (IV) and (V) in the presence of glutathione, cysteine, and other thiols and begin to evaluate the forms of the vanadium compounds that exert a particular biological effect including the insulin-enhancing agents, antiamoebic agents, and interactions with vanadium binding proteins.


Subject(s)
Organometallic Compounds/chemistry , Sulfhydryl Compounds/chemistry , Vanadates/chemistry , Vanadium/chemistry , Hydrogen-Ion Concentration , Mercaptoethanol/chemistry , Oxidation-Reduction , Solutions , Water/chemistry
5.
Biometals ; 22(6): 895-905, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19404749

ABSTRACT

Vanadium(III, IV, V)-chlorodipicolinate (dipic-Cl) complexes, including H[VIII(dipic-Cl)2] · 5H2O (V3dipic-Cl), VIVO(dipic-Cl)(H2O)2 (V4dipic-Cl) and K[VVO2(dipic-Cl)] (V5dipic-Cl), were prepared with the indicated oxidation states. Our aim was to evaluate the anti-diabetic effects of V3dipic-Cl, V4dipic-Cl and V5dipic-Cl in streptozotocin-induced diabetic rats. Vanadium complexes were orally administered to diabetic rats at concentrations of 0.1-0.3 mg/ml in the drinking water. We found that vanadium-chlorodipicolinate (V-dipic-Cl) complexes at the concentration of 0.1 mg/ml did not exhibit blood glucose-lowering effects when administered to diabetic rats for 20 days. However, the levels of fasting blood glucose in diabetic rats were decreased after treatment with 0.3 mg/ml of V4dipic-Cl and V5dipic-Cl complexes for the following 20 days. Although administration of both V4dipic-Cl and V5dipic-Cl significantly lowered diabetic hyperglycemia, the vanadium intake from administration of V4dipic-Cl is nearly 1.5-fold greater compared to that of V5dipic-Cl. Treatment with the H2dipic-Cl ligand and all three V-dipic-Cl complexes significantly lowered serum cholesterol, while administration of the V5dipic-Cl complex lowered serum cholesterol significantly more than administration of the ligand alone. Treatment with ligand alone did not have an effect on serum triglyceride, while administration of the V4dipic-Cl and V5dipic-Cl significantly lowered the elevated serum triglyceride associated with diabetes. Oral administration of the ligand and all V-dipic-Cl complexes did significantly lower diabetes elevated serum alkaline phosphatase. Treatment with H2dipic-Cl ligand and V4dipic-Cl and V5dipicCl significantly lowered diabetes elevated aspartate amino transferase. These results indicate that the health of the treated animals did not seem to be further compromised compared to that of diabetic animals. In addition, oral administration of H2dipic-Cl, V3dipic-Cl, V4dipic-Cl and V5dipic-Cl did not alter diabetic serum creatinine and blood urea nitrogen levels, suggesting no significant side effects of vanadium treatment on renal functions at the dose of 0.3 mg/ml in diabetic rats. The results presented here suggest that the anti-diabetic effects of treatment with V-dipic-Cl complexes were likely associated in part with the oxidation state of vanadium.


Subject(s)
Blood Glucose/drug effects , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/therapeutic use , Vanadates/therapeutic use , Administration, Oral , Alkaline Phosphatase/blood , Animals , Aspartate Aminotransferases/blood , Blood Glucose/analysis , Blood Urea Nitrogen , Chlorine/chemistry , Cholesterol/blood , Creatinine/blood , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/physiopathology , Disease Models, Animal , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/blood , Hypoglycemic Agents/chemical synthesis , Insulin/blood , Kidney Function Tests , Oxidation-Reduction , Picolinic Acids/chemistry , Rats , Rats, Wistar , Streptozocin/toxicity , Triglycerides/blood , Vanadates/administration & dosage , Vanadates/blood , Vanadates/chemical synthesis , Vanadium/chemistry
6.
J Inorg Biochem ; 103(4): 575-84, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19201030

ABSTRACT

Three vanadium complexes of chlorodipicolinic acid (4-chloro-2,6-dipicolinic acid) in oxidation states III, IV, and V were prepared and their properties characterized across the oxidation states. In addition, the series of hydroxylamido, methylhydroxylamido, dimethylhydroxylamido, and diethylhydroxylamido complexes were prepared from the chlorodipicolinato dioxovanadium(V) complex. The vanadium(V) compounds were characterized in solution by (51)V and (1)H NMR and in the solid-state by X-ray diffraction and (51)V NMR. Density Functional Theory (DFT) calculations were performed to evaluate the experimental parameters and further describes the electronic structure of the complex. The small structural changes that do occur in bond lengths and angles and partial charges on different atoms are minor compared to the charge features that are responsible for the majority of the electric field gradient tensor. The EPR parameters of the vanadium(IV) complex were characterized and compared to the corresponding dipicolinate complex. The chemical properties of the chlorodipicolinate compounds are discussed and correlated with their insulin-enhancing activity in streptozoticin (STZ) induced diabetic Wistar rats. The effect of the chloro-substitution on lowering diabetic hyperglycemia was evaluated and differences were found depending on the compounds oxidation state similar as was observed for the vanadium III, IV and V dipicolinate complexes (P. Buglyo, D.C. Crans, E.M. Nagy, R.L. Lindo, L. Yang, J.J. Smee, W. Jin, L.-H. Chi, M.E. Godzala III, G.R. Willsky, Inorg. Chem. 44 (2005) 5416-5427). However, a linear correlation of oxidation states with efficacy was not observed, which suggests that the differences in mode of action are not simply an issue of redox equivalents. Importantly, our results contrast the previous observation with the vanadium-picolinate complexes, where the halogen substituents increased the insulin-enhancing properties of the complex (T. Takino, H. Yasui, A. Yoshitake, Y. Hamajima, R. Matsushita, J. Takada, H. Sakurai, J. Biol. Inorg. Chem. 6 (2001) 133-142).


Subject(s)
Hypoglycemic Agents/chemistry , Insulin/pharmacology , Picolinic Acids/chemistry , Vanadium Compounds/chemistry , Animals , Diabetes Mellitus, Experimental/drug therapy , Electron Spin Resonance Spectroscopy , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Picolinic Acids/pharmacology , Rats , Rats, Wistar , Vanadium Compounds/pharmacology
7.
Inorg Chem ; 46(23): 9827-40, 2007 Nov 12.
Article in English | MEDLINE | ID: mdl-17941629

ABSTRACT

A number of 4-substituted, dipicolinatodioxovanadium(V) complexes and their hydroxylamido derivatives were synthesized to characterize the solid state and solution properties of five- and seven-coordinate vanadium(V) complexes. The X-ray crystal structures of Na[VO2dipic-NH2].2H2O (2) and K[VO2dipic-NO2] (3) show the vanadium adopting a distorted, trigonal-bipyramidal coordination environment similar to the parent coordination complex, [VO2dipic]- (1), reported previously as the Cs+ salt. The observed differences in the chemical shifts of the complexes both in the 1H (ca. 0.7-1.4 ppm) and 51V (ca. 1-11 ppm) NMR spectra were consistent with the electron-donating or electron-withdrawing properties of the substituent groups, respectively. Stoichiometric addition of a series of hydroxylamine ligands (H2NOH, MeHNOH, Me2NOH, and Et2NOH) to complexes 1-3 led to the formation of seven-coordinate vanadium(V) complexes. The X-ray crystal structure of [VO(dipic)(Me2NO)(H2O)].0.5H2O (1c) was found to be similar to the previously characterized complexes [VO(dipic)(H2NO)(H2O)] (1a) and [VO(dipic)(OO-tBu)(H2O)]. While only slight differences in the 1H NMR spectra were observed upon addition of the hydroxylamido ligand, the signals in the 51V NMR spectra change by up to 100 ppm. The addition of the hydroxylamido ligand increased the complex stability of complexes 2 and 3. Evidence for a nonstoichiometric redox reaction was found for the monoalkyl hydroxylamine ligand. The reaction of an unsaturated five-coordinate species with a hydroxylamine to form a seven-coordinate vanadium complex will, in general, dramatically increase the amounts of the vanadium compound that remain intact at pH values near neutral.


Subject(s)
Vanadium Compounds/chemical synthesis , Amides/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Picolinic Acids/chemistry , Solubility , Vanadium Compounds/chemistry , Water/chemistry
8.
Physiol Genomics ; 26(3): 192-201, 2006 Aug 16.
Article in English | MEDLINE | ID: mdl-16684804

ABSTRACT

Treatment with vanadium, a representative of a class of antidiabetic compounds, alleviates diabetic hyperglycemia and hyperlipidemia. Oral administration of vanadium compounds in animal models and humans does not cause clinical symptoms of hypoglycemia, a common problem for diabetic patients with insulin treatment. Gene expression, using Affymetrix arrays, was examined in muscle from streptozotocin-induced diabetic and normal rats in the presence or absence of oral vanadyl sulfate treatment. This treatment affected normal rats differently from diabetic rats, as demonstrated by two-way ANOVA of the full array data. Diabetes altered the expression of 133 genes, and the expression of 30% of these genes dysregulated in diabetes was normalized by vanadyl sulfate treatment. For those genes, the ratio of expression in normal animals to the expression in diabetic animals showed a strong negative correlation with the ratio of expression in diabetic animals to the expression in diabetic animals treated with vanadyl sulfate (P = -0.85). The genes identified belong to six major metabolic functional groups: lipid metabolism, oxidative stress, muscle structure, protein breakdown and biosynthesis, the complement system, and signal transduction. The identification of oxidative stress genes, coupled with the known oxidative chemistry of vanadium, implicates reactive oxygen species in the action of this class of compounds. These results imply that early transition metals or compounds formed from their chemical interactions with other metabolites may act as general transcription modulators, a role not usually associated with this class of compounds.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Gene Expression/drug effects , Muscle, Skeletal/drug effects , Vanadium Compounds/pharmacology , Administration, Oral , Analysis of Variance , Animals , Blood Glucose/metabolism , Cholesterol/blood , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/physiopathology , Fatty Acids, Nonesterified/blood , Gene Expression/genetics , Hyperglycemia/blood , Hyperglycemia/drug therapy , Hyperglycemia/physiopathology , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Lipid Metabolism/genetics , Male , Muscle, Skeletal/metabolism , Oligonucleotide Array Sequence Analysis/methods , Oxidative Stress/genetics , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Triglycerides/blood , Vanadium Compounds/administration & dosage
9.
BMC Bioinformatics ; 7: 12, 2006 Jan 10.
Article in English | MEDLINE | ID: mdl-16403228

ABSTRACT

BACKGROUND: The choice of probe set algorithms for expression summary in a GeneChip study has a great impact on subsequent gene expression data analysis. Spiked-in cRNAs with known concentration are often used to assess the relative performance of probe set algorithms. Given the fact that the spiked-in cRNAs do not represent endogenously expressed genes in experiments, it becomes increasingly important to have methods to study whether a particular probe set algorithm is more appropriate for a specific dataset, without using such external reference data. RESULTS: We propose the use of the probe set redundancy feature for evaluating the performance of probe set algorithms, and have presented three approaches for analyzing data variance and result bias using two sample t-test statistics from redundant probe sets. These approaches are as follows: 1) analyzing redundant probe set variance based on t-statistic rank order, 2) computing correlation of t-statistics between redundant probe sets, and 3) analyzing the co-occurrence of replicate redundant probe sets representing differentially expressed genes. We applied these approaches to expression summary data generated from three datasets utilizing individual probe set algorithms of MAS5.0, dChip, or RMA. We also utilized combinations of options from the three probe set algorithms. We found that results from the three approaches were similar within each individual expression summary dataset, and were also in good agreement with previously reported findings by others. We also demonstrate the validity of our findings by independent experimental methods. CONCLUSION: All three proposed approaches allowed us to assess the performance of probe set algorithms using the probe set redundancy feature. The analyses of redundant probe set variance based on t-statistic rank order and correlation of t-statistics between redundant probe sets provide useful tools for data variance analysis, and the co-occurrence of replicate redundant probe sets representing differentially expressed genes allows estimation of result bias. The results also suggest that individual probe set algorithms have dataset-specific performance.


Subject(s)
Algorithms , DNA Probes/genetics , Gene Expression Profiling/methods , Models, Genetic , Oligonucleotide Array Sequence Analysis/methods , Software Validation , Software , Data Interpretation, Statistical , Models, Statistical , Reproducibility of Results , Sample Size , Sensitivity and Specificity
10.
Inorg Chem ; 44(15): 5416-27, 2005 Jul 25.
Article in English | MEDLINE | ID: mdl-16022540

ABSTRACT

The aqueous vanadium(III) (V(III)) speciation chemistry of two dipicolinate-type complexes and the insulin-enhancing effects of V-dipicolinate (V-dipic) complexes in three different oxidation states (V(III), V(IV), and V(V)) have been studied in a chronic animal model system. The characterization of the V(III) species was carried out at low ionic strength to reflect physiological conditions and required an evaluation of the hydrolysis of V(III) at 0.20 M KCl. The aqueous V(III)-dipic and V(III)-dipic-OH systems were characterized, and complexes were observed from pH 2 to 7 at 0.2 M KCl. The V(III)-dipic system forms stable 1:2 complexes, whereas the V(III)-dipic-OH system forms stable 1:1 complexes. A comparison of these complexes with the V-pic system demonstrates that a second ligand has lower affinity for the V(III), presumably reflecting bidentate coordination of the second dipic(2)(-) to the V(III). The thermodynamic stability of the [V(III)(dipic)(2)](-) complex was compared to the stability of the corresponding V(IV) and V(V) complexes, and surprisingly, the V(III) complexes were found to be more stable than anticipated. Oral administration of three V-dipicolinate compounds in different oxidation states {H[V(III)(dipic)(2)H(2)O].3H(2)O, [V(IV)Odipic(H(2)O)(2)].2H(2)O, and NH(4)[V(V)O(2)dipic]} and the positive control, VOSO(4), significantly lowered diabetic hyperglycemia in rats with streptozotocin-induced diabetes. The diabetic animals treated with the V(III)- or V(IV)-dipic complexes had blood glucose levels that were statistically different from those of the diabetic group. The animals treated with the V(V)-dipic complex had the lowest blood glucose levels of the treated diabetic animals, which were statistically different from those of the diabetic group at all time points. Among the diabetic animals, complexation to dipic increased the serum levels of V after the administration of the V(V) and V(IV) complexes but not after the administration of the V(III) complex when data are normalized to the ingested dose of V. Because V compounds differing only in oxidation state have different biological properties, it is implied that redox processes must be important factors for the biological action of V compounds. We observe that the V(V)-dipic complex is the most effective insulin-enhancing agent, in contrast to previous studies in which the V(IV)-maltol complex is the most effective. We conclude that the effectiveness of complexed V is both ligand and oxidation state dependent.


Subject(s)
Diabetes Mellitus, Experimental/complications , Hyperglycemia/drug therapy , Organometallic Compounds/chemistry , Organometallic Compounds/therapeutic use , Picolinic Acids/chemistry , Vanadium/chemistry , Administration, Oral , Animals , Blood Glucose/drug effects , Chemical Phenomena , Chemistry , Diabetes Mellitus, Experimental/chemically induced , Disease Models, Animal , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , Hyperglycemia/blood , Hyperglycemia/etiology , Molecular Structure , Organometallic Compounds/administration & dosage , Oxidation-Reduction , Picolinic Acids/administration & dosage , Rats , Rats, Wistar , Streptozocin , Vanadium/administration & dosage , Vanadium/blood , Water/chemistry
11.
J Inorg Biochem ; 98(11): 1837-50, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15522411

ABSTRACT

The effects of Mo-hydroxylamido complexes on cell growth were determined in Saccharomyces cerevisiae to investigate the biological effects of four different Mo complexes as a function of pH. Studies with yeast, an eukaryotic cell, are particularly suited to examine growth at different pH values because this organism grows well from pH 3 to 6.5. Studies can therefore be performed both in the presence of intact complexes and when the complexes have hydrolyzed to ligand and free metal ion. One of the complexes we examined was structurally characterized by X-ray crystallography. Yeast growth was inhibited in media solutions containing added Mo-dialkylhydroxylamido complexes at pH 3-7. When combining the yeast growth studies with a systematic study of the Mo-hydroxylamido complexes' stability as a function of pH and an examination of their speciation in yeast media, the effects of intact complexes can be distinguished from that of ligand and metal. This is possible because different effects are observed with complex present than when ligand or metal alone is present. At pH 3, the growth inhibition is attributed to the forms of molybdate ion that exist in solution because most of the complexes have hydrolyzed to oxomolybdate and ligand. The monoalkylhydroxylamine ligand inhibited yeast growth at pH 5, 6 and 7, while the dialkylhydroxylamine ligands had little effect on yeast growth. Growth inhibition of the Mo-dialkylhydroxylamido complexes is observed when a complex exists in the media. A complex that is inert to ligand exchange is not effective even at pH 3 where other Mo-hydroxylamido complexes show growth inhibition as molybdate. These results show that the formation of some Mo complexes can protect yeast from the growth inhibition observed when either the ligand or Mo salt alone are present.


Subject(s)
Hydrogen-Ion Concentration , Hydroxylamines/pharmacology , Molybdenum/pharmacology , Saccharomyces cerevisiae/drug effects , Crystallography, X-Ray , Culture Media , Electrochemistry , Hydroxylamines/chemistry , Kinetics , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Saccharomyces cerevisiae/growth & development
12.
Inorg Chem ; 41(19): 4859-71, 2002 Sep 23.
Article in English | MEDLINE | ID: mdl-12230390

ABSTRACT

The synthesis and characterization of Co(II) and Co(III) 2,6-pyridinedicarboxylate (dipic(2-)) complexes are reported. Solid-state X-ray characterizations were performed on [Co(H(2)dipic)(dipic)].3H(2)O and [Co(dipic)(mu-dipic)Co(H(2)O)(5)].2H(2)O. Two coordination modes not previously observed in dipicolinate transition metal complexes were observed in these complexes; one involves metal coordination to the short C-O (C=O) bond, and the other involves metal coordination to a protonated oxygen atom. Solution studies, including paramagnetic NMR and UV-vis spectroscopy, were done showing the high stability and low lability of the Co(III) complex, whereas the Co(II) complexes exhibited ligand exchange in the presence of excess ligand. The [Co(dipic)(2)](2-) complex has pH dependent lability and in this regard is most similar to the [VO(2)dipic](-) complex. The [Co(dipic)(2)](2-) was found to be effective in reducing the hyperlipidemia of diabetes using oral administration in drinking water in rats with STZ-induced diabetes. Oral administration of VOSO(4) was used as a positive control for metal efficacy against diabetes. In addition to providing a framework to evaluate structure-function relationships of various transition metal complexes in alleviating the symptoms of diabetes, this work describes novel aspects of structural and solution cobalt chemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...