Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Enzymol ; 585: 329-354, 2017.
Article in English | MEDLINE | ID: mdl-28109437

ABSTRACT

Characterization of proteins that mediate mechanotransduction by hair cells, the sensory cells of the inner ear, is hampered by the scarcity of these cells and their sensory organelle, the hair bundle. Mass spectrometry, with its high sensitivity and identification precision, is the ideal method for determining which proteins are present in bundles and what proteins they interact with. We describe here the isolation of mouse hair bundles, as well as preparation of bundle protein samples for mass spectrometry. We also describe protocols for data-dependent (shotgun) and parallel reaction monitoring (targeted) mass spectrometry that allow us to identify and quantify proteins of the hair bundle. These sensitive methods are particularly useful for comparing proteomes of wild-type mice and mice with deafness mutations affecting hair-bundle proteins.


Subject(s)
Proteome/analysis , Cytoskeleton/metabolism , Hair Cells, Auditory/metabolism , Mass Spectrometry
2.
Leukemia ; 29(12): 2285-95, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26108689

ABSTRACT

We recently demonstrated that acute myeloid leukemia (AML) cell lines and patient-derived blasts release exosomes that carry RNA and protein; following an in vitro transfer, AML exosomes produce proangiogenic changes in bystander cells. We reasoned that paracrine exosome trafficking may have a broader role in shaping the leukemic niche. In a series of in vitro studies and murine xenografts, we demonstrate that AML exosomes downregulate critical retention factors (Scf, Cxcl12) in stromal cells, leading to hematopoietic stem and progenitor cell (HSPC) mobilization from the bone marrow. Exosome trafficking also regulates HSPC directly, and we demonstrate declining clonogenicity, loss of CXCR4 and c-Kit expression, and the consistent repression of several hematopoietic transcription factors, including c-Myb, Cebp-ß and Hoxa-9. Additional experiments using a model of extramedullary AML or direct intrafemoral injection of purified exosomes reveal that the erosion of HSPC function can occur independent of direct cell-cell contact with leukemia cells. Finally, using a novel multiplex proteomics technique, we identified candidate pathways involved in the direct exosome-mediated modulation of HSPC function. In aggregate, this work suggests that AML exosomes participate in the suppression of residual hematopoietic function that precedes widespread leukemic invasion of the bone marrow directly and indirectly via stromal components.


Subject(s)
Bone Marrow/physiopathology , Exosomes/physiology , Leukemia, Myeloid, Acute/pathology , Animals , Cell Movement , HL-60 Cells , Hematopoiesis , Hematopoietic Stem Cells/physiology , Humans , Leukemia, Myeloid, Acute/physiopathology , Mice , Mice, Inbred C57BL
3.
J Proteome Res ; 5(10): 2554-66, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17022627

ABSTRACT

We have employed recently developed blind modification search techniques to generate the most comprehensive map of post-translational modifications (PTMs) in human lens constructed to date. Three aged lenses, two of which had moderate cataract, and one young control lens were analyzed using multidimensional liquid chromatography mass spectrometry. In total, 491 modification sites in lens proteins were identified. There were 155 in vivo PTM sites in crystallins: 77 previously reported sites and 78 newly detected PTM sites. Several of these sites had modifications previously undetected by mass spectrometry in lens including carboxymethyl lysine (+58 Da), carboxyethyl lysine (+72 Da), and an arginine modification of +55 Da with yet unknown chemical structure. These new modifications were observed in all three aged lenses but were not found in the young lens. Several new sites of cysteine methylation were identified indicating this modification is more extensive in lens than previously thought. The results were used to estimate the extent of modification at specific sites by spectral counting. We tested the long-standing hypothesis that PTMs contribute to age-related loss of crystallin solubility by comparing spectral counts between the water-soluble and water-insoluble fractions of the aged lenses and found that the extent of deamidation was significantly increased in the water-insoluble fractions. On the basis of spectral counting, the most abundant PTMs in aged lenses were deamidations and methylated cysteines with other PTMs present at lower levels.


Subject(s)
Amides/analysis , Crystallins/analysis , Lens, Crystalline/chemistry , Protein Processing, Post-Translational , Age Factors , Aged , Aged, 80 and over , Amino Acid Sequence , Cysteine/analysis , Humans , Infant, Newborn , Male , Methylation , Molecular Sequence Data , Peptides/analysis , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...