Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 77(4): 1276-83, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21183643

ABSTRACT

The psychrophilic model bacterium Pseudoalteromonas haloplanktis is characterized by remarkably fast growth rates under low-temperature conditions in a range from 5°C to 20°C. In this study the proteome of cellular compartments, the cytoplasm and periplasm, of P. haloplanktis strain TAC125 was analyzed under exponential growth conditions at a permissive temperature of 16°C. By means of two-dimensional protein gel electrophoresis and mass spectrometry, a first inventory of the most abundant cytoplasmic and periplasmic proteins expressed in a peptone-supplemented minimal medium was established. By this approach major enzymes of the amino acid catabolism of this marine bacterium could be functionally deduced. The cytoplasmic proteome showed a predominance of amino acid degradation pathways and tricarboxylic acid (TCA) cycle enzymes but also the protein synthesis machinery. Furthermore, high levels of cold acclimation and oxidative stress proteins could be detected at this moderate growth temperature. The periplasmic proteome was characterized by a significant abundance of transporters, especially of highly expressed putative TonB-dependent receptors. This high capacity for protein synthesis, efficient amino acid utilization, and substrate transport may contribute to the fast growth rates of the copiotrophic bacterium P. haloplanktis in its natural environments.


Subject(s)
Bacterial Proteins/chemistry , Cytosol/metabolism , Periplasm/metabolism , Proteome/metabolism , Pseudoalteromonas/growth & development , Pseudoalteromonas/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/metabolism , Citric Acid Cycle , Culture Media , Electrophoresis, Gel, Two-Dimensional , Extreme Cold , Gene Expression , Pseudoalteromonas/cytology , Pseudoalteromonas/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
Microb Cell Fact ; 9: 72, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20858251

ABSTRACT

BACKGROUND: Pseudoalteromonas haloplanktis is a cold-adapted γ-proteobacterium isolated from Antarctic sea ice. It is characterized by remarkably high growth rates at low temperatures. P. haloplanktis is one of the model organisms of cold-adapted bacteria and has been suggested as an alternative host for the soluble overproduction of heterologous proteins which tend to form inclusion bodies in established expression hosts. Despite the progress in establishing P. haloplanktis as an alternative expression host the cell densities obtained with this organism, which is unable to use glucose as a carbon source, are still low. Here we present the first fed-batch cultivation strategy for this auspicious alternative expression host. RESULTS: The key for the fed-batch cultivation of P. haloplanktis was the replacement of peptone by casamino acids, which have a much higher solubility and allow a better growth control. In contrast to the peptone medium, on which P. haloplanktis showed different growth phases, on a casamino acids-containing, phosphate-buffered medium P. haloplanktis grew exponentially with a constant growth rate until the stationary phase. A fed-batch process was established by feeding of casamino acids with a constant rate resulting in a cell dry weight of about 11 g l⁻¹ (OD540 = 28) which is a twofold increase of the highest densities which have been obtained with P. haloplanktis so far and an eightfold increase of the density obtained in standard shake flask cultures. The cell density was limited in the fed-batch cultivation by the relatively low solubility of casamino acids (about 100 g l⁻¹), which was proven by pulse addition of casamino acid powder which increased the cell density to about 20 g l⁻¹ (OD540 = 55). CONCLUSION: The growth of P. haloplanktis to higher cell densities on complex medium is possible. A first fed-batch fermentation strategy could be established which is feasible to be used in lab-scale or for industrial purposes. The substrate concentration of the feeding solution was found to influence the maximal biomass yield considerably. The bottleneck for growing P. haloplanktis to high cell densities still remains the availability of a highly concentrated substrate and the reduction of the substrate complexity. However, our results indicate glutamic acid as a major carbon source, which provides a good basis for further improvement of the fed-batch process.


Subject(s)
Pseudoalteromonas/growth & development , Amino Acids/chemistry , Biomass , Cold Temperature , Culture Media , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL
...