Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0298073, 2024.
Article in English | MEDLINE | ID: mdl-38656948

ABSTRACT

Resilience-based management is essential to protect ecosystems in the Anthropocene. Unlike large-scale climate threats to Great Barrier Reef (GBR) corals, outbreaks of coral-eating crown-of-thorns starfish (COTS; Acanthaster cf. solaris) can be directly managed through targeted culling. Here, we evaluate the outcomes of a decade of strategic COTS management in suppressing outbreaks and protecting corals during the 4th COTS outbreak wave at reef and regional scales (sectors). We compare COTS density and coral cover dynamics during the 3rd and 4th outbreak waves. During the 4th outbreak wave, sectors that received limited to no culling had sustained COTS outbreaks causing significant coral losses. In contrast, in sectors that received timely and sufficient cull effort, coral cover increased substantially, and outbreaks were suppressed with COTS densities up to six-fold lower than in the 3rd outbreak wave. In the Townsville sector for example, despite exposure to comparable disturbance regimes during the 4th outbreak wave, effective outbreak suppression coincided with relative increases in sector-wide coral cover (44%), versus significant coral cover declines (37%) during the 3rd outbreak wave. Importantly, these estimated increases span entire sectors, not just reefs with active COTS control. Outbreaking reefs with higher levels of culling had net increases in coral cover, while the rate of coral loss was more than halved on reefs with lower levels of cull effort. Our results also indicate that outbreak wave progression to adjoining sectors has been delayed, probably via suppression of COTS larval supply. Our findings provide compelling evidence that proactive, targeted, and sustained COTS management can effectively suppress COTS outbreaks and deliver coral growth and recovery benefits at reef and sector-wide scales. The clear coral protection outcomes demonstrate the value of targeted manual culling as both a scalable intervention to mitigate COTS outbreaks, and a potent resilience-based management tool to "buy time" for coral reefs, protecting reef ecosystem functions and biodiversity as the climate changes.


Subject(s)
Anthozoa , Conservation of Natural Resources , Coral Reefs , Starfish , Animals , Starfish/physiology , Anthozoa/physiology , Conservation of Natural Resources/methods , Ecosystem , Australia/epidemiology
2.
Proc Biol Sci ; 287(1931): 20201052, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32693724

ABSTRACT

Population dynamics of organisms are shaped by the variation in phenotypic traits, often expressed even among individuals from the same cohort. For example, individual variation in the timing of ontogenetic shifts in diet and/or habitat greatly influences subsequent growth and survival of some organisms, with critical effects on population dynamics. Few studies of natural systems have, however, demonstrated that marked phenotypic variation in growth rates or body size among individuals within a modelled cohort is linked to dietary shifts and food availability. Population irruptions of the crown-of-thorns starfish are one of the foremost contributors to the global degradation of coral reefs, but causes of irruptions have been debated for decades. Here we demonstrate, based on extensive field sampling of juvenile starfish (n = 3532), that marked variation in body size among juvenile starfish is linked to an ontogenetic diet shift from coralline algae to coral. This transition in diet leads to exponential growth in juveniles and is essential for individuals to reach maturity. Because smaller individuals experience higher mortality and growth is stunted on an algal diet, the ontogenetic shift to corallivory enhances individual fitness and replenishment success. Our findings suggest that the availability of coral prey facilitates early ontogenetic diet shifts and may be fundamental in initiating population irruptions.


Subject(s)
Diet , Starfish/physiology , Animals , Anthozoa , Body Size , Coral Reefs , Population Dynamics
3.
Mar Pollut Bull ; 135: 332-345, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30301045

ABSTRACT

Numerous hypotheses have been put forward to account for population outbreaks of crown-of-thorns starfishes (CoTS, Acanthaster spp.), which place specific importance on either pre- or post-settlement mechanisms. The purpose of this review is to specifically assess the contributions of pre- versus post-settlement processes in the population dynamics of CoTS. Given the immense reproductive potential of CoTS (>100 million eggs per female), persistent high densities would appear inevitable unless there were significant constraints on larval development, settlement success, and/or early post-settlement growth and survival. In terms of population constraints, pre- and post-settlement processes are both important and have additive effects to suppress densities of juvenile and adult CoTS within reef ecosystems. It is difficult, however, to assess the relative contributions of pre- versus post-settlement processes to population outbreaks, especially given limited data on settlement rates, as well as early post-settlement growth and mortality. Prioritising this research is important to resolve potential effects of anthropogenic activities (e.g., fishing) and habitat degradation on changing population dynamics of CoTS, and will also improve management effectiveness.


Subject(s)
Starfish/physiology , Animals , Ecosystem , Female , Larva/growth & development , Larva/physiology , Male , Population Dynamics , Reproduction , Starfish/growth & development
4.
Zookeys ; (185): 73-8, 2012.
Article in English | MEDLINE | ID: mdl-22577314

ABSTRACT

This dataset includes information on sea stars collected during the ANDEEP3 expedition, which took place in 2005. The expedition focused on deep-sea stations in the Powell Basin and Weddell Sea.Sea stars were collected using an Agassiz trawl (3m, mesh-size 500µm), deployed in 16 stations during the ANTXXII/3 (ANDEEP3, PS72) expedition of the RV Polarstern. Sampling depth ranged from 1047 to 4931m. Trawling distance ranged from 731 to 3841m. The sampling area ranges from -41°S to -71°S (latitude) and from 0 to -65°W (longitude). A complete list of stations is available from the PANGAEA data system (http://www.pangaea.de/PHP/CruiseReports.php?b=Polarstern), including a cruise report (http://epic-reports.awi.de/3694/1/PE_72.pdf).The dataset includes 50 records, with individual counts ranging from 1-10, reaching a total of 132 specimens.The andeep3-Asteroidea is a unique dataset as it covers an under-explored region of the Southern Ocean, and that very little information was available regarding Antarctic deep-sea starfish. Before this study, most of the information available focused on starfish from shallower depths than 1000m. This dataset allowed to make unique observations, such as the fact that some species were only present at very high depths (Hymenaster crucifer, Hymenaster pellucidus, Hymenaster praecoquis, Psilaster charcoti, Freyella attenuata, Freyastera tuberculata, Styrachaster chuni and Vemaster sudatlanticus were all found below -3770m), while others displayed remarkable eurybathy, with very high depths amplitudes (Bathybiaster loripes (4842m), Lysasterias adeliae (4832m), Lophaster stellans (4752m), Cheiraster planeta (4708m), Eremicaster crassus (4626m), Lophaster gaini (4560m) and Ctenodiscus australis (4489m)).Even if the number of records is relatively small, the data bring many new insights on the taxonomic, bathymetric and geographic distributions of Southern starfish, covering a very large sampling zone. The dataset also brings to light six species, newly reported in the Southern Ocean.The quality of the data was controlled very thoroughly, by means of on-board Polarstern GPS systems, checking of identification by a renowned specialist (Prof. Michel Jangoux, Université Libre de Bruxelles), and matching to the Register of Antarctic Marine Species (RAMS) and World Register of Marine Species (WoRMS). The data is therefore fit for completing checklists, for inclusion in biodiversity patterns analysis, or niche modeling. It also nicely fills an information gap regarding deep-sea starfish from the Southern Ocean, for which data is very scarce at this time. The authors may be contacted if any additional information is needed before carrying out detailed biodiversity or biogeographic studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...