Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 618: 24-29, 2022 08 27.
Article in English | MEDLINE | ID: mdl-35714567

ABSTRACT

Thioredoxin (Trx) family proteins are key players in redox signaling. Here, we have analyzed glutaredoxin (Grx) 1 and Grx2 in age-related macular degeneration (AMD) and in retinal pigment epithelial (ARPE-19) cells. We hypothesized that these redoxins regulate cellular functions and signaling circuits such as cell proliferation, Wnt signaling and VEGF release that have been correlated to the pathophysiology of AMD. ARPE-19 cells were transfected with specific siRNAs to silence the expression of Grx1 and Grx2 and were analyzed for proliferation/viability, migration capacity, ß-catenin activation, and VEGF release. An active site-mutated C-X-X-S Grx1 was utilized to trap interacting proteins present in ARPE-19 cell extracts. In both, AMD retinas and in ARPE-19 cells incubated under hypoxia/reoxygenation conditions, Grx1 showed an increased nuclear localization. Grx1-silenced ARPE-19 cells showed a significantly reduced proliferation and migration rate. Our trapping approach showed that Grx1 interacts with ß-catenin in a dithiol-disulfide exchange reaction. Knock-down of Grx1 led to a reduction in both total and active ß-catenin levels. These findings add redox control to the regulatory mechanisms of ß-catenin signaling in the retinal pigment epithelium and open the door to novel therapeutic approaches in AMD that is currently treated with VEGF-inhibitors.


Subject(s)
Glutaredoxins , Macular Degeneration , Retinal Pigment Epithelium , beta Catenin , Cell Proliferation/physiology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Glutaredoxins/genetics , Glutaredoxins/metabolism , Humans , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Retinal Pigments/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , beta Catenin/metabolism
2.
Redox Biol ; 49: 102221, 2022 02.
Article in English | MEDLINE | ID: mdl-34952462

ABSTRACT

Redox regulation of specific cysteines via oxidoreductases of the thioredoxin family is increasingly being recognized as an important signaling pathway. Here, we demonstrate that the cytosolic isoform of the vertebrate-specific oxidoreductase Glutaredoxin 2 (Grx2c) regulates the redox state of the transcription factor SP-1 and thereby its binding affinity to both the promoter and an enhancer region of the CSPG4 gene encoding chondroitin sulfate proteoglycan nerve/glial antigen 2 (NG2). This leads to an increased number of NG2 glia during in vitro oligodendroglial differentiation and promotes migration of these wound healing cells. On the other hand, we found that the same mechanism also leads to increased invasion of glioma tumor cells. Using in vitro (human cell lines), ex vivo (mouse primary cells), and in vivo models (zebrafish), as well as glioblastoma patient tissue samples we provide experimental data highlighting the Yin and Yang of redox signaling in the central nervous system and the enzymatic Taoism of Grx2c.


Subject(s)
Glioma , Glutaredoxins , Animals , Chondroitin Sulfate Proteoglycans/genetics , Chondroitin Sulfate Proteoglycans/metabolism , Glioma/genetics , Glioma/metabolism , Glutaredoxins/genetics , Glutaredoxins/metabolism , Humans , Membrane Proteins/metabolism , Mice , Neuroglia/metabolism , Religious Philosophies , Wound Healing/genetics , Zebrafish/metabolism
3.
Int J Mol Sci ; 19(3)2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29495602

ABSTRACT

Development and homeostasis of the epidermis are governed by a complex network of sequence-specific transcription factors and epigenetic modifiers cooperatively regulating the subtle balance of progenitor cell self-renewal and terminal differentiation. To investigate the role of histone H2A deubiquitinase 2A-DUB/Mysm1 in the skin, we systematically analyzed expression, developmental functions, and potential interactions of this epigenetic regulator using Mysm1-deficient mice and skin-derived epidermal cells. Morphologically, skin of newborn and young adult Mysm1-deficient mice was atrophic with reduced thickness and cellularity of epidermis, dermis, and subcutis, in context with altered barrier function. Skin atrophy correlated with reduced proliferation rates in Mysm1-/- epidermis and hair follicles, and increased apoptosis compared with wild-type controls, along with increases in DNA-damage marker γH2AX. In accordance with diminished α6-Integrinhigh+CD34⁺ epidermal stem cells, reduced colony formation of Mysm1-/- epidermal progenitors was detectable in vitro. On the molecular level, we identified p53 as potential mediator of the defective Mysm1-deficient epidermal compartment, resulting in increased pro-apoptotic and anti-proliferative gene expression. In Mysm1-/-p53-/- double-deficient mice, significant recovery of skin atrophy was observed. Functional properties of Mysm1-/- developing epidermis were assessed by quantifying the transepidermal water loss. In summary, this investigation uncovers a role for 2A-DUB/Mysm1 in suppression of p53-mediated inhibitory programs during epidermal development.


Subject(s)
Endopeptidases/metabolism , Epidermis/embryology , Epidermis/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis/genetics , Atrophy , Endopeptidases/genetics , Epidermis/pathology , Gene Expression , Genotype , Immunohistochemistry , Mice , Mice, Knockout , Stem Cells/metabolism , Trans-Activators , Tumor Suppressor Protein p53/genetics , Ubiquitin-Specific Proteases
4.
Oncotarget ; 8(40): 67287-67299, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28978033

ABSTRACT

Histone modifying enzymes, such as histone deacetylases (HDACs) and polycomb repressive complex (PRC) components, have been implicated in regulating tumor growth, epithelial-mesenchymal transition, tumor stem cell maintenance, or repression of tumor suppressor genes - and may be promising targets for combination therapies of melanoma and other cancers. According to recent findings, the histone H2A deubiquitinase 2A-DUB/Mysm1 interacts with the p53-axis in hematopoiesis and tissue differentiation in mice, in part by modulating DNA-damage responses in stem cell and progenitor compartments. Based on the identification of alterations in skin pigmentation and melanocyte specification in Mysm1-deficient mice, we hypothesized that MYSM1 may be involved in melanoma formation. In human melanoma samples, expression of MYSM1 was increased compared with normal skin melanocytes and nevi and co-localized with melanocyte markers such as Melan-A and c-KIT. Similarly, in melanoma cell lines A375 and SK-MEL-28 and in murine skin, expression of the deubiquitinase was detectable at the mRNA and protein level that was inducible by growth factor signals and UVB exposure, respectively. Upon stable silencing of MYSM1 in A375 and SK-MEL-28 melanoma cells by lentivirally-mediated shRNA expression, survival and proliferation were significantly reduced in five MYSM1 shRNA cell lines analyzed compared with control cells. In addition, MYSM1-silenced melanoma cells proliferated less well in softagar assays. In context with our finding that MYSM1 bound to the c-MET promoter region in close vicinity to PAX3 in melanoma cells, our data indicate that MYSM1 is an epigenetic regulator of melanoma growth and potentially promising new target for tumor therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...